Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 433(24): 167328, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34688686

ABSTRACT

T cell receptor (TCR) signaling in response to antigen recognition is essential for the adaptive immune response. Cholesterol keeps TCRs in the resting conformation and mediates TCR clustering by directly binding to the transmembrane domain of the TCRß subunit (TCRß-TM), while cholesterol sulfate (CS) displaces cholesterol from TCRß. However, the atomic interaction of cholesterol or CS with TCRß remains elusive. Here, we determined the cholesterol and CS binding site of TCRß-TM in phospholipid bilayers using solution nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulation. Cholesterol binds to the transmembrane residues within a CARC-like cholesterol recognition motif. Surprisingly, the polar OH group of cholesterol is placed in the hydrophobic center of the lipid bilayer stabilized by its polar interaction with K154 of TCRß-TM. An aromatic interaction with Y158 and hydrophobic interactions with V160 and L161 stabilize this reverse orientation. CS binds to the same site, explaining how it competes with cholesterol. Site-directed mutagenesis of the CARC-like motif disrupted the cholesterol/CS binding to TCRß-TM, validating the NMR and MD results.


Subject(s)
Cholesterol/chemistry , Lipid Bilayers/chemistry , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Binding Sites , Cholesterol Esters/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Receptors, Antigen, T-Cell, alpha-beta/genetics
2.
Front Cell Dev Biol ; 8: 615996, 2020.
Article in English | MEDLINE | ID: mdl-33490080

ABSTRACT

Biological membranes consist of hundreds of different lipids that together with the embedded transmembrane (TM) proteins organize themselves into small nanodomains. In addition to this function of lipids, TM regions of proteins bind to lipids in a very specific manner, but the function of these TM region-lipid interactions is mostly unknown. In this review, we focus on the role of plasma membrane cholesterol, which directly binds to the αß T cell antigen receptor (TCR), and has at least two opposing functions in αß TCR activation. On the one hand, cholesterol binding to the TM domain of the TCRß subunit keeps the TCR in an inactive, non-signaling conformation by stabilizing this conformation. This assures that the αß T cell remains quiescent in the absence of antigenic peptide-MHC (the TCR's ligand) and decreases the sensitivity of the T cell toward stimulation. On the other hand, cholesterol binding to TCRß leads to an increased formation of TCR nanoclusters, increasing the avidity of the TCRs toward the antigen, thus increasing the sensitivity of the αß T cell. In mouse models, pharmacological increase of the cholesterol concentration in T cells caused an increase in TCR clustering, and thereby enhanced anti-tumor responses. In contrast, the γδ TCR does not bind to cholesterol and might be regulated in a different manner. The goal of this review is to put these seemingly controversial findings on the impact of cholesterol on the αß TCR into perspective.

3.
J Biol Chem ; 293(3): 863-875, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29191834

ABSTRACT

The metazoan actin cytoskeleton supports a wide range of contractile and transport processes. Recent studies have shown how the dynamic association with specific tropomyosin isoforms generates actin filament populations with distinct functional properties. However, critical details of the associated molecular interactions remain unclear. Here, we report the properties of actomyosin-tropomyosin complexes containing filamentous ß-actin, nonmuscle myosin-2B (NM-2B) constructs, and either tropomyosin isoform Tpm1.8cy (b.-.b.d), Tpm1.12br (b.-.b.c), or Tpm3.1cy (b.-.a.d). Our results show the extent to which the association of filamentous ß-actin with these different tropomyosin cofilaments affects the actin-mediated activation of NM-2B and the release of the ATP hydrolysis products ADP and phosphate from the active site. Phosphate release gates a transition from weak to strong F-actin-binding states. The release of ADP has the opposite effect. These changes in dominant rate-limiting steps have a direct effect on the duty ratio, the fraction of time that NM-2B spends in strongly F-actin-bound states during ATP turnover. The duty ratio is increased ∼3-fold in the presence of Tpm1.12 and 5-fold for both Tpm1.8 and Tpm3.1. The presence of Tpm1.12 extends the time required per ATP hydrolysis cycle 3.7-fold, whereas it is shortened by 27 and 63% in the presence of Tpm1.8 and Tpm3.1, respectively. The resulting Tpm isoform-specific changes in the frequency, duration, and efficiency of actomyosin interactions establish a molecular basis for the ability of these complexes to support cellular processes with widely divergent demands in regard to force production, capacity to move processively, and speed of movement.


Subject(s)
Actins/metabolism , Myosins/metabolism , Protein Isoforms/metabolism , Tropomyosin/metabolism , Animals , Cell Line, Tumor , Humans , Kinetics , Neuroblastoma/metabolism , Protein Binding
4.
Nature ; 534(7609): 724-8, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27324845

ABSTRACT

The interaction of myosin with actin filaments is the central feature of muscle contraction and cargo movement along actin filaments of the cytoskeleton. The energy for these movements is generated during a complex mechanochemical reaction cycle. Crystal structures of myosin in different states have provided important structural insights into the myosin motor cycle when myosin is detached from F-actin. The difficulty of obtaining diffracting crystals, however, has prevented structure determination by crystallography of actomyosin complexes. Thus, although structural models exist of F-actin in complex with various myosins, a high-resolution structure of the F-actin­myosin complex is missing. Here, using electron cryomicroscopy, we present the structure of a human rigor actomyosin complex at an average resolution of 3.9 Å. The structure reveals details of the actomyosin interface, which is mainly stabilized by hydrophobic interactions. The negatively charged amino (N) terminus of actin interacts with a conserved basic motif in loop 2 of myosin, promoting cleft closure in myosin. Surprisingly, the overall structure of myosin is similar to rigor-like myosin structures in the absence of F-actin, indicating that F-actin binding induces only minimal conformational changes in myosin. A comparison with pre-powerstroke and intermediate (Pi-release) states of myosin allows us to discuss the general mechanism of myosin binding to F-actin. Our results serve as a strong foundation for the molecular understanding of cytoskeletal diseases, such as autosomal dominant hearing loss and diseases affecting skeletal and cardiac muscles, in particular nemaline myopathy and hypertrophic cardiomyopathy.


Subject(s)
Actomyosin/chemistry , Actomyosin/ultrastructure , Cytoplasm/chemistry , Actins/chemistry , Actins/ultrastructure , Binding Sites , Cryoelectron Microscopy , Humans , Models, Molecular , Myosins/chemistry , Myosins/ultrastructure , Protein Binding , Protein Conformation , Protein Stability
5.
Sci Rep ; 6: 20554, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26847712

ABSTRACT

Tropomyosin isoforms play an important role in the organisation of cytoplasmic actomyosin complexes in regard to function and cellular localisation. In particular, Tpm4.2 is upregulated in rapidly migrating cells and responsible for the specific recruitment of the cytoplasmic class-2 myosin NM-2A to actin filaments during the formation of stress fibres. Here, we investigate how the decoration of F-actin with Tpm4.2 affects the motor properties of NM-2A under conditions of low and high load. In the absence of external forces, decoration of actin filaments with Tpm4.2 does not affect the gated release of ADP from NM-2A and the transition from strong to weak actin-binding states. In the presence of resisting loads, our results reveal a marked increase in the mechanosensitive gating between the leading and trailing myosin head. Thereby, the processive behaviour of NM-2A is enhanced in the presence of resisting loads. The load- and Tpm4.2-induced changes in the functional behaviour of NM-2A are in good agreement with the role of this myosin in the context of stress fibres and the maintenance of cellular tension.


Subject(s)
Actins/metabolism , Nonmuscle Myosin Type IIA/metabolism , Tropomyosin/metabolism , Adenosine Diphosphate/metabolism , Humans , Kinetics , Protein Isoforms/metabolism
6.
FEBS Lett ; 588(24): 4754-60, 2014 Dec 20.
Article in English | MEDLINE | ID: mdl-25451231

ABSTRACT

We determined the crystal structure of the motor domain of human non-muscle myosin 2B (NM-2B) in a nucleotide-free state and at a resolution of 2.8 Å. The structure shows the motor domain with an open active site and the large cleft that divides the 50 kDa domain in a closed state. Compared to other rigor-like myosin motor domain structures, our structure shows subtle but significant conformational changes in regions important for actin binding and mechanochemical coupling. Moreover, our crystal structure helps to rationalize the impact of myosin, heavy chain 9 (MYH9)-related disease mutations Arg709Cys and Arg709His on the kinetic and functional properties of NM-2B and of the closely related non-muscle myosin 2A (NM-2A).


Subject(s)
Myosins/chemistry , Amino Acid Sequence , Cloning, Molecular , Crystallography, X-Ray , Humans , Models, Molecular , Mutation , Myosins/genetics , Myosins/isolation & purification , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...