Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 15(6): 428, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890285

ABSTRACT

Neuroblastoma (NB) is a highly aggressive pediatric cancer that originates from immature nerve cells, presenting significant treatment challenges due to therapy resistance. Despite intensive treatment, approximately 50% of high-risk NB cases exhibit therapy resistance or experience relapse, resulting in poor outcomes often associated with tumor immune evasion. B7-H3 is an immune checkpoint protein known to inhibit immune responses. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation. Our study aims to explore the impact of miRNAs on B7-H3 regulation, the anti-tumor immune response, and tumorigenicity in NB. Analysis of NB patients and patient-derived xenograft tumors revealed a correlation between higher B7-H3 expression and poorer patient survival. Notably, deceased patients exhibited a depletion of miR-29 family members (miR-29a, miR-29b, and miR-29c), which displayed an inverse association with B7-H3 expression in NB patients. Overexpression and knockdown experiments demonstrated that these miRNAs degrade B7-H3 mRNA, resulting in enhanced NK cell activation and cytotoxicity. In vivo, experiments provided further evidence that miR-29 family members reduce tumorigenicity, macrophage infiltration, and microvessel density, promote infiltration and activation of NK cells, and induce tumor cell apoptosis. These findings offer a rationale for developing more effective combination treatments that leverage miRNAs to target B7-H3 in NB patients.


Subject(s)
B7 Antigens , Killer Cells, Natural , MicroRNAs , Neuroblastoma , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , B7 Antigens/metabolism , B7 Antigens/genetics , Neuroblastoma/genetics , Neuroblastoma/immunology , Neuroblastoma/pathology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Mice, Nude , Female , Male , Lymphocyte Activation
2.
Mol Ther Nucleic Acids ; 35(2): 101543, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38817681

ABSTRACT

Neuroblastoma is the most devastating extracranial solid malignancy in children. Despite an intense treatment regimen, the prognosis for high-risk neuroblastoma patients remains poor, with less than 40% survival. So far, MYCN amplification status is considered the most prognostic factor but corresponds to only ∼25% of neuroblastoma patients. Therefore, it is essential to identify a better prognosis and therapy response marker in neuroblastoma patients. We applied robust bioinformatic data mining tools, such as weighted gene co-expression network analysis, cisTarget, and single-cell regulatory network inference and clustering on two neuroblastoma patient datasets. We found Sin3A-associated protein 30 (SAP30), a driver transcription factor positively associated with high-risk, progression, stage 4, and poor survival in neuroblastoma patient cohorts. Tumors of high-risk neuroblastoma patients and relapse-specific patient-derived xenografts showed higher SAP30 levels. The advanced pharmacogenomic analysis and CRISPR-Cas9 screens indicated that SAP30 essentiality is associated with cisplatin resistance and further showed higher levels in cisplatin-resistant patient-derived xenograft tumor cell lines. Silencing of SAP30 induced cell death in vitro and led to a reduced tumor burden and size in vivo. Altogether, these results indicate that SAP30 is a better prognostic and cisplatin-resistance marker and thus a potential drug target in high-risk neuroblastoma.

3.
Mol Ther Oncol ; 32(2): 200785, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38595981

ABSTRACT

The cell cycle comprises sequential events during which a cell duplicates its genome and divides it into two daughter cells. This process is tightly regulated to ensure that the daughter cell receives identical copied chromosomal DNA and that any errors in the DNA during replication are correctly repaired. Cyclins and their enzyme partners, cyclin-dependent kinases (CDKs), are critical regulators of G- to M-phase transitions during the cell cycle. Mitogenic signals induce the formation of the cyclin/CDK complexes, resulting in phosphorylation and activation of the CDKs. Once activated, cyclin/CDK complexes phosphorylate specific substrates that drive the cell cycle forward. The sequential activation and inactivation of cyclin-CDK complexes are tightly controlled by activating and inactivating phosphorylation events induced by cell-cycle proteins. The non-coding RNAs (ncRNAs), which do not code for proteins, regulate cell-cycle proteins at the transcriptional and translational levels, thereby controlling their expression at different cell-cycle phases. Deregulation of ncRNAs can cause abnormal expression patterns of cell-cycle-regulating proteins, resulting in abnormalities in cell-cycle regulation and cancer development. This review explores how ncRNA dysregulation can disrupt cell division balance and discusses potential therapeutic approaches targeting these ncRNAs to control cell-cycle events in cancer treatment.

4.
Cancers (Basel) ; 15(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37345170

ABSTRACT

According to the World Health Organization, every year, an estimated 400,000+ new cancer cases affect children under the age of 20 worldwide. Unlike adult cancers, pediatric cancers develop very early in life due to alterations in signaling pathways that regulate embryonic development, and environmental factors do not contribute much to cancer development. The highly organized complex microenvironment controlled by synchronized gene expression patterns plays an essential role in the embryonic stages of development. Dysregulated development can lead to tumor initiation and growth. The low mutational burden in pediatric tumors suggests the predominant role of epigenetic changes in driving the cancer phenotype. However, one more upstream layer of regulation driven by ncRNAs regulates gene expression and signaling pathways involved in the development. Deregulation of ncRNAs can alter the epigenetic machinery of a cell, affecting the transcription and translation profiles of gene regulatory networks required for cellular proliferation and differentiation during embryonic development. Therefore, it is essential to understand the role of ncRNAs in pediatric tumor development to accelerate translational research to discover new treatments for childhood cancers. This review focuses on the role of ncRNA in regulating the epigenetics of pediatric tumors and their tumor microenvironment, the impact of their deregulation on driving pediatric tumor progress, and their potential as effective therapeutic targets.

6.
Semin Cancer Biol ; 86(Pt 2): 247-258, 2022 11.
Article in English | MEDLINE | ID: mdl-35787940

ABSTRACT

High-risk neuroblastoma (NB) is challenging to treat with 5-year long-term survival in patients remaining below 50% and low chances of survival after tumor relapse or recurrence. Different strategies are being tested or under evaluation to destroy resistant tumors and improve survival outcomes in NB patients. Immunotherapy, which uses certain parts of a person's immune system to recognize or kill tumor cells, effectively improves patient outcomes in several types of cancer, including NB. One of the immunotherapy strategies is to block immune checkpoint signaling in tumors to increase tumor immunogenicity and anti-tumor immunity. Immune checkpoint proteins put brakes on immune cell functions to regulate immune activation, but this activity is exploited in tumors to evade immune surveillance and attack. Immune checkpoint proteins play an essential role in NB biology and immune escape mechanisms, which makes these tumors immunologically cold. Therapeutic strategies to block immune checkpoint signaling have shown promising outcomes in NB but only in a subset of patients. However, combining immune checkpoint blockade with other therapies, including conjugated antibody-based immunotherapy, radioimmunotherapy, tumor vaccines, or cellular therapies like modified T or natural killer (NK) cells, has shown encouraging results in enhancing anti-tumor immunity in the preclinical setting. An analysis of publicly available dataset using computational tools has unraveled the complexity of multiple cancer including NB. This review comprehensively summarizes the current information on immune checkpoint molecules, their biology, role in immune suppression and tumor development, and novel therapeutic approaches combining immune checkpoint inhibitors with other therapies to combat high-risk NB.


Subject(s)
Immune Checkpoint Proteins , Neuroblastoma , Humans , Neoplasm Recurrence, Local , Neuroblastoma/therapy , Immunotherapy/methods , Killer Cells, Natural
7.
Mol Ther Oncolytics ; 25: 308-329, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35663229

ABSTRACT

Neuroblastoma (NB) is an enigmatic and deadliest pediatric cancer to treat. The major obstacles to the effective immunotherapy treatments in NB are defective immune cells and the immune evasion tactics deployed by the tumor cells and the stromal microenvironment. Nervous system development during embryonic and pediatric stages is critically mediated by non-coding RNAs such as micro RNAs (miR). Hence, we explored the role of miRs in anti-tumor immune response via a range of data-driven workflows and in vitro & in vivo experiments. Using the TARGET, NB patient dataset (n=249), we applied the robust bioinformatic workflows incorporating differential expression, co-expression, survival, heatmaps, and box plots. We initially demonstrated the role of miR-15a-5p (miR-15a) and miR-15b-5p (miR-15b) as tumor suppressors, followed by their negative association with stromal cell percentages and a statistically significant negative regulation of T and natural killer (NK) cell signature genes, especially CD274 (PD-L1) in stromal-low patient subsets. The NB phase-specific expression of the miR-15a/miR-15b-PD-L1 axis was further corroborated using the PDX (n=24) dataset. We demonstrated miR-15a/miR-15b mediated degradation of PD-L1 mRNA through its interaction with the 3'-untranslated region and the RNA-induced silencing complex using sequence-specific luciferase activity and Ago2 RNA immunoprecipitation assays. In addition, we established miR-15a/miR-15b induced CD8+T and NK cell activation and cytotoxicity against NB in vitro. Moreover, injection of murine cells expressing miR-15a reduced tumor size, tumor vasculature and enhanced the activation and infiltration of CD8+T and NK cells into the tumors in vivo. We further established that blocking the surface PD-L1 using an anti-PD-L1 antibody rescued miR-15a/miR-15b induced CD8+T and NK cell-mediated anti-tumor responses. These findings demonstrate that miR-15a and miR-15b induce an anti-tumor immune response by targeting PD-L1 in NB.

9.
Semin Cancer Biol ; 83: 227-241, 2022 08.
Article in English | MEDLINE | ID: mdl-33910063

ABSTRACT

Epigenetics is a process that involves the regulation of gene expression without altering the sequence of DNA. Numerous studies have documented that epigenetic mechanisms play a critical role in cell growth, differentiation, and cancer over the past decade. The well-known epigenetic modifications are either on DNA or at the histone proteins. Although several studies have focused on regulating gene expression by non-coding RNAs, the current understanding of their biological functions in various human diseases, particularly in cancers, is inadequate. Only about two percent of DNA is involved in coding the protein-coding genes, and leaving the rest 98 percent is non-coding and the scientific community regarded as junk or noise with no known purpose. Most non-coding RNAs are derived from such junk DNA and are known to be involved in various signaling pathways involving cancer initiation, progression, and the development of therapy resistance in many human cancer types. Recent studies have suggested that non-coding RNAs, especially microRNAs, piwi-interactingRNAs, and long non-coding RNAs, play a significant role in controlling epigenetic mechanism(s), indicating the potential effect of epigenetic modulation of non-coding RNAs on cancer progression. In this review article, we briefly presented epigenetic marks' characteristics, crosstalk between epigenetic modifications and microRNAs, piwi-interactingRNAs, and long non-coding RNAs to uncover the effect on the phenotype of pediatric cancers. Further, current knowledge on understanding the RNA epigenetics will help design novel therapeutics that target epigenetic regulatory networks to benefit cancer patients in the clinic.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , DNA Methylation , Epigenesis, Genetic , Humans , MicroRNAs/genetics , Neoplasms/genetics , RNA, Long Noncoding/genetics
10.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188624, 2021 12.
Article in English | MEDLINE | ID: mdl-34487817

ABSTRACT

Recent advances in extracellular vesicle biology have uncovered a substantial role in maintaining cell homeostasis in health and disease conditions by mediating intercellular communication, thus catching the scientific community's attention worldwide. Extracellular microvesicles, some called exosomes, functionally transfer biomolecules such as proteins and non-coding RNAs from one cell to another, influencing the local environment's biology. Although numerous advancements have been made in treating cancer patients with immune therapy, controlling the disease remains a challenge in the clinic due to tumor-driven interference with the immune response and inability of immune cells to clear cancer cells from the body. The present review article discusses the recent findings and knowledge gaps related to the role of exosomes derived from tumors and the tumor microenvironment cells in tumor escape from immunosurveillance. Further, we highlight examples where exosomal non-coding RNAs influence immune cells' response within the tumor microenvironment and favor tumor growth and progression. Therefore, exosomes can be used as a therapeutic target for the treatment of human cancers.


Subject(s)
Biomarkers, Tumor/metabolism , Exosomes/metabolism , Tumor Escape/immunology , Tumor Microenvironment/immunology , Humans
11.
Mol Ther Nucleic Acids ; 23: 1371-1383, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33738133

ABSTRACT

Recent advances in exosome biology have uncovered a significant role of exosomes in cancer and make them a determining factor in intercellular communication. Exosomes are types of extracellular vesicles that are involved in the communication between cells by exchanging various signaling molecules between the surrounding cells. Among various signaling molecules, long non-coding RNAs (lncRNAs), a type of non-coding RNA having a size of more than 200 nt in length and lacking protein-coding potential, have emerged as crucial regulators of intercellular communication. Tumor-derived exosomes containing various lncRNAs, known as exosomal lncRNAs, reprogram the microenvironment by regulating numerous cellular functions, including the regulation of gene transcription that favors cancer growth and progression, thus significantly determining the biological effects of exosomes. In addition, deregulated expression of lncRNAs is found in various human cancers and serves as a diagnostic biomarker to predict cancer type. The present review discusses the role of exosomal lncRNAs in the crosstalk between tumor cells and the surrounding cells of the microenvironment. Furthermore, we also discuss the involvement of exosomal lncRNAs within the tumor microenvironment in favoring tumor growth, metabolic reprogramming of tumor cells, and tumor-supportive autophagy. Therefore, lncRNAs can be used as a therapeutic target in the treatment of various human cancers.

12.
Theranostics ; 11(2): 731-753, 2021.
Article in English | MEDLINE | ID: mdl-33391502

ABSTRACT

The coronavirus disease 2019 (COVID-19) is a viral disease caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that affects the respiratory system of infected individuals. COVID-19 spreads between humans through respiratory droplets produced when an infected person coughs or sneezes. The COVID-19 outbreak originated in Wuhan, China at the end of 2019. As of 29 Sept 2020, over 235 countries, areas or territories across the globe reported a total of 33,441,919 confirmed cases, and 1,003,497 confirmed deaths due to COVID-19. Individuals of all ages are at risk for infection, but in most cases disease severity is associated with age and pre-existing diseases that compromise immunity, like cancer. Numerous reports suggest that people with cancer can be at higher risk of severe illness and related deaths from COVID-19. Therefore, managing cancer care under this pandemic is challenging and requires a collaborative multidisciplinary approach for optimal care of cancer patients in hospital settings. In this comprehensive review, we discuss the impact of the COVID-19 pandemic on cancer patients, their care, and treatment. Further, this review covers the SARS-CoV-2 pandemic, genome characterization, COVID-19 pathophysiology, and associated signaling pathways in cancer, and the choice of anticancer agents as repurposed drugs for treating COVID-19.


Subject(s)
Antineoplastic Agents/therapeutic use , COVID-19 Drug Treatment , Neoplasms/drug therapy , SARS-CoV-2/genetics , Antineoplastic Agents/pharmacology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Comorbidity , Drug Repositioning , Genome, Viral/genetics , Humans , Neoplasms/epidemiology , Pandemics/prevention & control , SARS-CoV-2/immunology , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology
13.
Cancers (Basel) ; 12(9)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927667

ABSTRACT

Neuroblastoma are pediatric, extracranial malignancies showing alarming survival prognosis outcomes due to their resilience to current aggressive treatment regimens, including chemotherapies with cisplatin (CDDP) provided in the first line of therapy regimens. Metabolic deregulation supports tumor cell survival in drug-treated conditions. However, metabolic pathways underlying cisplatin-resistance are least studied in neuroblastoma. Our metabolomics analysis revealed that cisplatin-insensitive cells alter their metabolism; especially, the metabolism of amino acids was upregulated in cisplatin-insensitive cells compared to the cisplatin-sensitive neuroblastoma cell line. A significant increase in amino acid levels in cisplatin-insensitive cells led us to hypothesize that the mechanisms upregulating intracellular amino acid pools facilitate insensitivity in neuroblastoma. We hereby report that amino acid depletion reduces cell survival and cisplatin-insensitivity in neuroblastoma cells. Since cells regulate their amino acids levels through processes, such as autophagy, we evaluated the effects of hydroxychloroquine (HCQ), a terminal autophagy inhibitor, on the survival and amino acid metabolism of cisplatin-insensitive neuroblastoma cells. Our results demonstrate that combining HCQ with CDDP abrogated the amino acid metabolism in cisplatin-insensitive cells and sensitized neuroblastoma cells to sub-lethal doses of cisplatin. Our results suggest that targeting of amino acid replenishing mechanisms could be considered as a potential approach in developing combination therapies for treating neuroblastomas.

14.
Mol Oncol ; 14(1): 180-196, 2020 01.
Article in English | MEDLINE | ID: mdl-31637848

ABSTRACT

Neuroblastoma (NB) is the most common extracranial solid malignancy in children. Despite current aggressive treatment regimens, the prognosis for high-risk NB patients remains poor, with the survival of less than 40%. Amplification/stabilization of MYCN oncogene, in NB is associated with a high risk of recurrence. Thus, there is an urgent need for novel therapeutics. The deregulated expression of microRNA (miR) is reported in NB; nonetheless, its effect on MYCN regulation is poorly understood. First, we identified that miR-15a-5p, miR-15b-5p, and miR-16-5p (hereafter miR-15a, miR-15b or miR-16) were down-regulated in patient-derived xenografts (PDX) with high MYCN expression. MiR targeting sequences on MYCN mRNA were predicted using online databases such as TargetScan and miR database. The R2 database, containing 105 NB patients, showed an inverse correlation between MYCN mRNA and deleted in lymphocytic leukemia (DLEU) 2, a host gene of miR-15. Moreover, overexpression of miR-15a, miR-15b or miR-16 significantly reduced the levels of MYCN mRNA and N-Myc protein. Conversely, inhibiting miR dramatically enhanced MYCN mRNA and N-Myc protein levels, as well as increasing mRNA half-life in NB cells. By performing immunoprecipitation assays of argonaute-2 (Ago2), a core component of the RNA-induced silencing complex, we showed that miR-15a, miR-15b and miR-16 interact with MYCN mRNA. Luciferase reporter assays showed that miR-15a, miR-15b and miR-16 bind with 3'UTR of MYCN mRNA, resulting in MYCN suppression. Moreover, induced expression of miR-15a, miR-15b and miR-16 significantly reduced the proliferation, migration, and invasion of NB cells. Finally, transplanting miR-15a-, miR-15b- and miR-16-expressing NB cells into NSG mice repressed tumor formation and MYCN expression. These data suggest that miR-15a, miR-15b and miR-16 exert a tumor-suppressive function in NB by targeting MYCN. Therefore, these miRs could be considered as potential targets for NB treatment.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Heterografts/metabolism , MicroRNAs/metabolism , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/metabolism , 3' Untranslated Regions , Animals , Argonaute Proteins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Survival/genetics , Databases, Genetic , Down-Regulation , Humans , Mice , Mice, Inbred NOD , Mice, Nude , MicroRNAs/genetics , N-Myc Proto-Oncogene Protein/genetics , Neoplasm Invasiveness/genetics , Neuroblastoma/genetics , Neuroblastoma/mortality , Neuroblastoma/pathology , RNA, Long Noncoding , Transferases/genetics , Up-Regulation , Xenograft Model Antitumor Assays
15.
Mol Aspects Med ; 70: 21-32, 2019 12.
Article in English | MEDLINE | ID: mdl-31623866

ABSTRACT

Acute myeloid leukemia (AML) is caused by abnormal production of white blood cells, red blood cells or platelets. The leukemia cells communicate with their microenvironment through nano-vesicle exosomes that are 30-100 nm in diameter. These nano-vesicles are released from body fluids upon fusion of an endocytic compartment with the cell membrane. Exosomes function as cargo to deliver signaling molecules to distant cells. This allows cross-talk between hematopoietic cells and other distant target cell environments. Exosomes support leukemia growth by acting as messengers between tumor cells and the microenvironment as well as inducing oncogenic factors such as c-Myc. Exosomes have also been used as biomarkers in the clinical diagnosis of leukemia. Glycogen synthase kinase-3 (GSK-3) and protein phosphatase 2A (PP2A) are two crucial signaling molecules involved in the AML pathogenesis and MYC stability. GSK-3 is a serine/threonine protein kinase that coordinates with over 40 different proteins during physiological/pathological conditions in blood cells. The dysregulation in GSK-3 has been reported during hematological malignancies. GSK-3 acts as a tumor suppressor by targeting c-MYC, MCL-1 and ß-catenin. Conversely, GSK-3 can also act as tumor promoter in some instances. The pharmacological modulators of GSK-3 such as ABT-869, 6-Bromoindirubin-3'-oxime (BIO), GS-87 and LY2090314 have shown promise in the treatment of hematological malignancy. PP2A is a heterotrimeric serine/threonine phosphatase involved in the regulation of hematological malignancy. PP2A-activating drugs (PADs) can effectively antagonize leukemogenesis. The discovery of exosomes, kinase inhibitors and phosphatase activators have provided new hope to the leukemia patients. This review discusses the role of exosomes, GSK-3 and PP2A in the pathogenesis of leukemia. We provide evidence from both preclinical and clinical studies.


Subject(s)
Drug Resistance, Neoplasm , Exosomes/metabolism , Leukemia, Myeloid, Acute/drug therapy , Proto-Oncogene Proteins c-myc/metabolism , Animals , Biomarkers, Tumor/metabolism , Humans , Tumor Microenvironment
16.
Sci Rep ; 9(1): 13902, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554835

ABSTRACT

G-protein coupled receptor kinase 2 (GRK2; ADRBK1, BARK1) is most known as a regulator of G-protein coupled receptors. However, GRK2 also has other functions. Medulloblastomas are the most common malignant brain cancers in children. GRK2 has not been implicated in medulloblastoma biology. Here we report that GRK2 knockdown slowed cell growth, diminished proliferation, and enhanced cisplatin- and etoposide-induced apoptosis in medulloblastoma cell lines UW228-2 and Daoy. Reciprocally, GRK2 overexpression attenuated apoptosis induced by these chemotherapy drugs. Cisplatin and etoposide increased phosphorylation of AKT (S473) and GRK2 knockdown mitigated this increase. Cisplatin and etoposide attenuated ERK phosphorylation, but GRK2 knockdown did not alter this effect. Wildtype GRK2 reversed the increase in cisplatin- and etoposide-induced apoptosis caused by GRK2 knockdown. GRK2-K220R (kinase dead) and GRK2-S670A (unphosphorylated, constitutively active) conferred protection from cisplatin that was similar to wildtype GRK2, suggesting that this protection may be mediated though a kinase-independent activity of GRK2. These data demonstrate that GRK2 contributes to proliferation and survival of these medulloblastoma cell lines and to their protection from cisplatin- and etoposide-induced apoptosis.


Subject(s)
Apoptosis/physiology , Cell Proliferation/physiology , Cerebellar Neoplasms/metabolism , G-Protein-Coupled Receptor Kinase 2/metabolism , Medulloblastoma/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Cerebellar Neoplasms/drug therapy , Cisplatin/pharmacology , Etoposide/pharmacology , HEK293 Cells , Humans , Medulloblastoma/drug therapy , Phosphorylation/drug effects
17.
Sci Rep ; 6: 33146, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27680387

ABSTRACT

In this study, we investigated the role of autophagy induced by boswellic acid analog BA145 on cell cycle progression in pancreatic cancer cells. BA145 induced robust autophagy in pancreatic cancer cell line PANC-1 and exhibited cell proliferation inhibition by inducing cells to undergo G2/M arrest. Inhibition of G2/M progression was associated with decreased expression of cyclin A, cyclin B, cyclin E, cdc2, cdc25c and CDK-1. Pre-treatment of cells with autophagy inhibitors or silencing the expression of key autophagy genes abrogated BA145 induced G2/M arrest and downregulation of cell cycle regulatory proteins. It was further observed that BA145 induced autophagy by targeting mTOR kinase (IC50 1 µM), leading to reduced expression of p-mTOR, p-p70S6K (T389), p-4EBP (T37/46) and p-S6 (S240/244). Notably, inhibition of mTOR signalling by BA145 was followed by attendant activation of AKT and its membrane translocation. Inhibition of Akt through pharmacological inhibitors or siRNAs enhanced BA145 mediated autophagy, G2/M arrest and reduced expression of G2/M regulators. Further studies revealed that BA145 arbitrated inhibition of mTOR led to the activation of Akt through IGFR/PI3k/Akt feedback loop. Intervention in IGFR/PI3k/Akt loop further depreciated Akt phosphorylation and its membrane translocation that culminates in augmented autophagy with concomitant G2/M arrest and cell death.

18.
Mol Cancer ; 14: 6, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25608686

ABSTRACT

BACKGROUND: While angiogenesis inhibitors represent a viable cancer therapy, there is preclinical and clinical data to suggest that many tumors develop resistance to such treatments. Moreover, previous studies have revealed a complex association between autophagy and angiogenesis, and their collective influence on tumorigenesis. Autophagy has been implicated in cytoprotection and tumor promotion, and as such may represent an alternative way of targeting apoptosis-resistant cancer cells. This study explored the anti-cancer agent and boswellic acid analog BA145 as an inducer of autophagy and angiogenesis-mediated cytoprotection of tumor cells. METHODS: Flow cytometry, western blotting, and confocal microscopy were used to investigate the role of BA145 mediated autophagy. ELISA, microvessel sprouting, capillary structure formation, aortic ring and wound healing assays were performed to determine the relationship between BA145 triggered autophagy and angiogenesis. Flow cytometery, western blotting, and microscopy were employed to examine the mechanism of BA145 induced cell death and apoptosis. Live imaging and tumor volume analysis were carried out to evaluate the effect of BA145 triggered autophagy on mouse tumor xenografts. RESULTS: BA145 induced autophagy in PC-3 cancer cells and HUVECs significantly impeded its negative regulation on cell proliferation, migration, invasion and tube formation. These effects of BA145 induced autophagy were observed under both normoxic and hypoxic conditions. However, inhibition of autophagy using either pharmacological inhibitors or RNA interference enhanced the BA145 mediated death of these cells. Similar observations were noticed with sunitinib, the anti-angiogenic properties of which were significantly enhanced during combination treatments with autophagy inhibitors. In mouse tumor xenografts, co-treatment with chloroquinone and BA145 led to a considerable reduction in tumor burden and angiogenesis compared to BA145 alone. CONCLUSION: These studies reveal the essential role of BA145 triggered autophagy in the regulation of angiogenesis and cytoprotection. It also suggests that the combination of the autophagy inhibitors with chemotherapy or anti-angiogenic agents may be an effective therapeutic approach against cancer.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Triterpenes/chemistry , Animals , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Indoles/pharmacology , Pyrroles/pharmacology , Sunitinib
19.
PLoS One ; 9(11): e110411, 2014.
Article in English | MEDLINE | ID: mdl-25383546

ABSTRACT

Tryptanthrin is a natural product which has been reported to have several medicinal properties. In this study, we tried to investigate the detailed molecular mechanism of its bromo analogue (TBr), a potent cytotoxic agent in the induction of cancer cell death. It was found that TBr primarily targets STAT3 and ERK signaling during the induction of apoptosis in several human leukemia cell lines. In HL-60 cells, TBr treatment caused early down regulation of p-STAT3 with concomitant up regulation of p-ERK which led to the activation of intrinsic and extrinsic pathways of apoptosis. The mechanism of TBr mediated inhibition of p-STAT3 was found to be due to the activation of ubiquitin dependent degradation of tyrosine 705 and serine 727 p-STAT3. As IL-6 is the main driver of the STAT3 pathway, the effect of TBr on cell death was subdued when treated in the combination with IL-6 in HL60 cells. Interestingly, PD98059 significantly reduced the apoptotic effects of TBr, thus showing the direct involvement of p-ERK in TBr mediated cell death. It was further shown that apoptotic protein Bax silencing in HL-60 cells resists TBr mediated ERK dependent apoptosis. In summary, for the first time we report the mechanism of TBr mediated cell death in human leukemia cell lines by targeting STAT3 and ERK pathways.


Subject(s)
Apoptosis/drug effects , Gene Expression Regulation/drug effects , HL-60 Cells/drug effects , MAP Kinase Signaling System/physiology , Quinazolines/pharmacology , Blotting, Western , Caspases/metabolism , Cell Proliferation/drug effects , Flavonoids , Flow Cytometry , Gene Silencing , HL-60 Cells/metabolism , HL-60 Cells/physiology , Humans , Immunoprecipitation , Membrane Potential, Mitochondrial/physiology , Microscopy, Fluorescence , Quinazolines/chemistry , RNA, Small Interfering/genetics , STAT3 Transcription Factor/metabolism
20.
J Nat Prod ; 76(9): 1724-30, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-24041234

ABSTRACT

Mallotus B (2d) is a prenylated dimeric phloroglucinol compound isolated from Mallotus philippensis. There have been no reports on the synthesis or biological activity of this compound. In the present paper, a semisynthetic preparation of mallotus B is reported via base-mediated intramolecular rearrangement of rottlerin (1), which is one of the major constituents of M. philippensis. The homodimer "rottlerone" was also formed as one of the products of this base-mediated intramolecular reaction. Rottlerin (1), along with rottlerone (2c) and mallotus B (2d), was evaluated for cytotoxicity against a panel of cancer cell lines including HEPG2, Colo205, MIAPaCa-2, PC-3, and HL-60 cells. Mallotus B (2d) displayed cytotoxicity for MIAPaCa-2 and HL-60 cells with IC50 values of 9 and 16 µM, respectively. Microscopic studies in HL-60 cells indicated that mallotus B (2d) induces cell cycle arrest at the G1 phase and causes defective cell division. It also induces apoptosis, as evidenced by distinct changes in cell morphology.


Subject(s)
Acetophenones/chemical synthesis , Acetophenones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzopyrans/chemical synthesis , Benzopyrans/pharmacology , Mallotus Plant/chemistry , Phloroglucinol/analogs & derivatives , Acetophenones/chemistry , Antineoplastic Agents/chemistry , Benzopyrans/chemistry , Cell Cycle/drug effects , Cell Division/drug effects , Drug Screening Assays, Antitumor , HL-60 Cells , Hep G2 Cells , Humans , Molecular Structure , Phloroglucinol/chemical synthesis , Phloroglucinol/chemistry , Phloroglucinol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...