Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 10(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38446015

ABSTRACT

In this study, metagenomic sequence data was used to investigate the phytoplasma taxonomic diversity in vegetable-growing regions across Australia. Metagenomic sequencing was performed on 195 phytoplasma-positive samples, originating either from historic collections (n=46) or during collection efforts between January 2015 and June 2022 (n=149). The sampled hosts were classified as crop (n=155), weed (n=24), ornamental (n=7), native plant (n=6), and insect (n=3) species. Most samples came from Queensland (n=78), followed by Western Australia (n=46), the Northern Territory (n=32), New South Wales (n=17), and Victoria (n=10). Of the 195 draft phytoplasma genomes, 178 met our genome criteria for comparison using an average nucleotide identity approach. Ten distinct phytoplasma species were identified and could be classified within the 16SrII, 16SrXII (PCR only), 16SrXXV, and 16SrXXXVIII phytoplasma groups, which have all previously been recorded in Australia. The most commonly detected phytoplasma taxa in this study were species and subspecies classified within the 16SrII group (n=153), followed by strains within the 16SrXXXVIII group ('Ca. Phytoplasma stylosanthis'; n=6). Several geographic- and host-range expansions were reported, as well as mixed phytoplasma infections of 16SrII taxa and 'Ca. Phytoplasma stylosanthis'. Additionally, six previously unrecorded 16SrII taxa were identified, including five putative subspecies of 'Ca. Phytoplasma australasiaticum' and a new putative 16SrII species. PCR and sequencing of the 16S rRNA gene was a suitable triage tool for preliminary phytoplasma detection. Metagenomic sequencing, however, allowed for higher-resolution identification of the phytoplasmas, including mixed infections, than was afforded by only direct Sanger sequencing of the 16S rRNA gene. Since the metagenomic approach theoretically obtains sequences of all organisms in a sample, this approach was useful to confirm the host family, genus, and/or species. In addition to improving our understanding of the phytoplasma species that affect crop production in Australia, the study also significantly expands the genomic sequence data available in public sequence repositories to contribute to phytoplasma molecular epidemiology studies, revision of taxonomy, and improved diagnostics.


Subject(s)
Coinfection , Phytoplasma , Vegetables , Phytoplasma/genetics , RNA, Ribosomal, 16S/genetics , Metagenome , Victoria
2.
Curr Microbiol ; 79(6): 164, 2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35435500

ABSTRACT

Erwinia mallotivora is one of the most important bacterial pathogens of papaya and causes bacterial crown rot disease in the Philippines. In this paper, we present the draft genome sequences of six Philippine E. mallotivora isolates to provide insights into the genes involved in host-pathogen interactions and compare their genomes to other Erwinia species. The genomes were sequenced using Illumina Miseq platform. The draft whole-genome assemblies of the E. mallotivora isolates are composed of 36-64 contigs with N50 value ranging from 285 to 332 kbp and cover 96.2-100% of the estimated genome size. Structural genome annotation of these assemblies has predicted 4489-4749 protein-coding genes. Comparative genomic analysis using orthologous gene sets led to the identification of conserved genes within the genus and species-specific gene orthologous groups, which collectively provide a baseline for functional genomic studies to determine genes affecting virulence and host specificity. Secreted proteins of E. mallotivora were also predicted and characterized to unravel putative genes involved in plant-pathogen interactions. This study provides the first draft whole-genome sequences of Philippine isolates of E. mallotivora, thus expanding the genomic knowledge for this species in comparison with other members of the genus Erwinia.


Subject(s)
Erwinia , Erwinia/genetics , Genome, Bacterial/genetics , Genomics , Philippines
SELECTION OF CITATIONS
SEARCH DETAIL
...