Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cytokine ; 113: 105-116, 2019 01.
Article in English | MEDLINE | ID: mdl-29929938

ABSTRACT

BACKGROUND & PURPOSE: Recent studies suggested a role of prostaglandin E2 (PGE2) in the expression of the chemokine IL-8 by monocytes. The function of EP4 receptor for TNFα-induced IL-8 expression was studied in monocytic cell lines. EXPERIMENTAL APPROACH: IL-8 mRNA and protein induction as well as IL-8 promoter activity and transcription factor activation were assessed in monocytic cell lines, primary blood mononuclear cells (PBMC) and transgenic HEK293 cells expressing the EP4 receptor. KEY RESULTS: In monocytic cell lines THP-1, MonoMac and U937 PGE2 had only a marginal impact on IL-8 induction but strongly enhanced TNFα-induced IL-8 mRNA and protein synthesis. Similarly, in PBMC IL-8 mRNA induction was larger by simultaneous stimulation with TNFα and PGE2 than by either stimulus alone. The EP4 receptor subtype was the most abundant EP receptor in all three cell lines and in PBMC. Stimulation of THP-1 cells with an EP4 specific agonist enhanced TNFα-induced IL-8 mRNA and protein formation to the same extent as PGE2. In HEK293 cells expressing EP4, but not in wild type HEK293 cells lacking EP4, PGE2 enhanced TNFα-induced IL-8 protein and mRNA synthesis. In THP-1 cells, the enhancement of TNFα-mediated IL-8 mRNA induction by PGE2 was mimicked by a PKA-activator. Furthermore in these cells PGE2 induced expression of transcription factor C/EBPß, enhanced NF-κB activation by TNFα and inhibited TNFα-mediated AP-1 activation. PGE2 and TNFα synergistically activated transcription factor CREB, induced C/EBPß expression and enhanced the activity of an IL-8 promoter fragment containing -223 bp upstream of the transcription start site. CONCLUSIONS AND IMPLICATIONS: These findings suggest that a combined stimulation of TNFα and PGE2/EP4 signal chains in monocytic cells leads to maximal IL-8 promoter activity, as well as IL-8 mRNA and protein induction, by activating the PKA/CREB/C/EBPß as well as NF-κB signal chains.


Subject(s)
Dinoprostone/pharmacology , Interleukin-8/metabolism , Leukocytes, Mononuclear/drug effects , Monocytes/drug effects , Tumor Necrosis Factor-alpha/metabolism , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein/metabolism , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Leukocytes, Mononuclear/metabolism , Monocytes/metabolism , NF-kappa B/metabolism , RNA, Messenger/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Signal Transduction/drug effects , THP-1 Cells/drug effects , THP-1 Cells/metabolism , U937 Cells
2.
Br J Pharmacol ; 168(3): 704-17, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22924768

ABSTRACT

BACKGROUND AND PURPOSE: Recent studies suggested a role for PGE(2) in the expression of the chemokine IL-8. PGE(2) signals via four different GPCRs, EP(1) -EP(4) . The role of EP(1) and EP(4) receptors for IL-8 induction was studied in HEK293 cells, overexpressing EP(1) (HEK-EP(1) ), EP(4) (HEK-EP(4) ) or both receptors (HEK-EP(1) + EP(4) ). EXPERIMENTAL APPROACH: IL-8 mRNA and protein induction and IL-8 promoter and NF-κB activation were assessed in EP expressing HEK cells. KEY RESULTS: In HEK-EP(1) and HEK-EP(1) + EP(4) but not HEK or HEK-EP(4) cells, PGE(2) activated the IL-8 promoter and induced IL-8 mRNA and protein synthesis. Stimulation of HEK-EP(1) + EP(4) cells with an EP(1) -specific agonist activated IL-8 promoter and induced IL-8 mRNA and protein, whereas a specific EP(4) agonist neither activated the IL-8 promoter nor induced IL-8 mRNA and protein synthesis. Simultaneous stimulation of HEK- EP(1) + EP(4) cells with both agonists activated IL-8 promoter and induced IL-8 mRNA to the same extent as PGE(2) . In HEK-EP(1) + EP(4) cells, PGE(2) -mediated IL-8 promoter activation and IL-8 mRNA induction were blunted by inhibition of IκB kinase. PGE(2) activated NF-κB in HEK-EP(1) , HEK-EP(4) and HEK-EP(1) + EP(4) cells. In HEK-EP(1) + EP(4) cells, simultaneous activation of both receptors was needed for maximal PGE(2) -induced NF-κB activation. PGE(2) -stimulated NF-κB activation by EP(1) was blocked by inhibitors of PLC, calcium-signalling and Src-kinase, whereas that induced by EP(4) was only blunted by Src-kinase inhibition. CONCLUSIONS AND IMPLICATIONS: These findings suggest that PGE(2) -mediated NF-κB activation by simultaneous stimulation of EP(1) and EP(4) receptors induces maximal IL-8 promoter activation and IL-8 mRNA and protein induction.


Subject(s)
Dinoprostone/pharmacology , Interleukin-8/metabolism , NF-kappa B/metabolism , Receptors, Prostaglandin E, EP1 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , HEK293 Cells , Humans , Interleukin-8/genetics , Promoter Regions, Genetic , RNA, Messenger/metabolism , Receptors, Prostaglandin E, EP1 Subtype/genetics , Receptors, Prostaglandin E, EP4 Subtype/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...