Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37461526

ABSTRACT

Background: Phlebotomine sand flies serve as vectors for leishmaniasis, a major health concern, but a neglected tropical disease. The risk of vector activity is governed by climatic factors that vary in different geographic zones in the country. Thus, we aimed to quantify the effect of climatic variables on sand fly vector activity in ten sentinel sites across Sri Lanka. Methods: Mean rainfall, ambient temperature, relative humidity, wind speed, soil temperature, evaporation, sunshine hours, and vector densities were recorded at monthly intervals in each location from March 2018 to February 2020. The association between weather variables and sand fly densities was analysed using a two-staged hierarchical procedure; Distributed Lag Non-Linear (DLNM) modelling framework and the DLNM method implemented in the R package dlnm (version number 2.4.6). Results: Moderate rainfall values up to 120 mm per month and increasing RH up to 82 at lag of 0 months along with increasing soil temperature and evaporation rate at lag of 2 months were associated with statistically significant increase in the sand fly activity. These associations were heterogeneous across study settings. Whereas increasing ambient and soil temperature, sunshine hours, evaporation rate appeared to reduce the sand fly activity homogeneously at lag of 0 month in all the study settings. Conclusions: The abundance of sand fly vectors varied in relation to selected climatic variables, either in real-time or with a time lag. This information can be utilized for predicting sand fly densities and for the development of effective strategies to prevent leishmaniasis transmission in specific settings.

2.
Parasit Vectors ; 13(1): 246, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32404115

ABSTRACT

BACKGROUND: Leishmania donovani-induced and sand fly-transmitted leishmaniasis is a growing health problem in Sri Lanka. Limited knowledge on biological and behavioral characteristics of probable vector Phlebotomus argentipes hinders disease control. Here, insecticide susceptibility patterns of P. argentipes were investigated with exploration of probable underlying resistance mechanisms. METHODS: Adult sand flies were collected using standard cattle baited net traps and CDC light traps from selected sites in four districts. Adult F1 progeny of P. argentipes were exposed to different concentrations of DDT, malathion, deltamethrin and propoxur using WHO susceptibility bioassay kits. Post-1-h knockdown and post-24-h mortality were recorded and analyzed. Metabolic enzyme activity and the sensitivity of the acetylcholinesterase target-site were determined by biochemical assays using wild-caught flies. Extracted fly DNA samples were tested for the presence of knockdown-resistance (kdr) type mutations. RESULTS: The LC100 values for DDT, malathion, propoxur and deltamethrin were 0.8-1.5%, 0.9-2.0%, 0.017-0.03% and 0.007% respectively. Insecticide-susceptibility levels were higher than the discriminating dosages established for Aedes mosquitoes, except for malathion. The lowest susceptibility levels (except for deltamethrin) were detected in the Mamadala population, whereas the highest levels were detected in the Mirigama population. The percentage of knocked-down sand flies was < 75% at any tested concentration, including those, which exhibited 100% mortality after 24 h. Elevated activity levels of glutathione S-transferase (3%, 7%, 12.5% and 14%) and esterase (2%, 5%, 5.5% and 6.5%) were detected in flies that originated from Mirigama, Pannala, Thalawa and Mamadala respectively, while monooxygenase quantities remained below the cut-off level. Ten to 34.5% of flies were heterozygous for acetylcholinesterases target-site insensitivity, associated with organophosphate and carbamate resistance. Pyrethroid-resistance-associated L1014F kdr-type mutation in the voltage gated sodium channel gene was detected in 30/53 flies. CONCLUSIONS: Populations of P. argentipes in Sri Lanka are largely susceptible to common insecticides, except for malathion (used extensively in the past for malaria control). Their insecticide susceptibility appears negatively associated with past malaria endemicity of the study sites, with signs of early insecticide tolerance. Presence of insecticide target site insensitivity in a notable proportion of flies and enhanced insecticide metabolizing enzyme activities imply potential future challenges for leishmaniasis control, with a call for urgent proactive measures for its containment.


Subject(s)
Insect Vectors , Insecticides , Phlebotomus , Acetylcholinesterase/metabolism , Animals , Cattle , Female , Glutathione Transferase/metabolism , Insect Vectors/enzymology , Insect Vectors/genetics , Insecticide Resistance/genetics , Insecticides/classification , Mixed Function Oxygenases/metabolism , Mutation , Phlebotomus/enzymology , Phlebotomus/genetics , Pyrethrins , Sri Lanka
SELECTION OF CITATIONS
SEARCH DETAIL
...