Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 35(23): 9857-9878, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38107191

ABSTRACT

Isoreticularity in metal organic frameworks (MOFs) allows the design of the framework structure and tailoring the pore aperture at the molecular level. The optimal pore volume, long-range order of framework expansion, and crystallite size (grain size) could enable improving Li-ion conduction, thereby providing a unique opportunity to design high-performance solid and quasi-solid electrolytes. However, definitive understanding of the pore aperture, framework expansion, and crystallite size on the Li-ion conduction and its mechanism in MOFs remains at the exploratory stage. Among the different MOF subfamilies, Li-MOFs created by the isoreticular framework expansion using dicarboxylates of benzene, naphthalene, and biphenyl building blocks emerge as low-density porous solids with exceptional thermal stability to study the solid-state Li+ transport mechanisms. Herein, we report the subtle effect of the isoreticularity in Li-MOFs on the performance of solid and quasi-solid-state Li+ conduction, providing new insight into Li+ transport mechanisms in MOFs for the first time. Our experimental and computational results show that the reticular design on an isostructural extended framework structure with the optimal pore aperture and crystallite size can influence the Li+ conductivity, exhibiting comparable ionic conductivities to solid polymer electrolytes at room temperature. Aligning with the computational studies, our experimental absorption spectral traces of solid electrolytes prepared by encapsulating lithium salt (LiClO4) and the plasticizer (ethylene carbonate) with Li-MOFs confirm the participation of the free and bound states of Li+ in a pore filling-driven ion conduction mechanism. We postulate that porous channels of Li-MOFs aid free Li+ to move through the pores via a vehicle-type mechanism, in which the pore-filled plasticizer acts as a carrier for mobile Li+ while the framework's functional sites transport the bound state of Li+ via an ion hopping mechanism from one crystallite site to another. Our computational studies performed on the Li+ conduction pathway validated the postulated pore filling mechanism and confirmed the involvement of bridging complexes, formed by binding Li+ onto the framework's functional sites as well as to the pore-filled ethylene carbonates. The Li+ diffusion energy barrier profiles along with the respective conformational changes during the diffusion of Li+ in solid electrolytes prepared from Li-BDC MOF and Li-NDC MOF strongly support the cooperative movement of Li+ ions via ion hopping along the framework's edges and vehicle-type transfer, involving the pore-filled plasticizer. Our findings suggest that cooperative function of the optimal pore volume, framework expansion, and crystallite size play a unique role in Li-ion conduction, thereby providing design guidelines for the low-density solid and quasi-solid electrolytes.

2.
Langmuir ; 39(7): 2500-2508, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36724795

ABSTRACT

Controlling the nucleation and growth processes for nanoparticle synthesis allows the development of well-defined structures that offer unique chemical and physical properties. Here, we report a wet chemical reduction method for synthesizing ruthenium nanocubes (Ru NCs) that display plasmonic properties at room temperature (RT). The growth of the particles to form nanostructured cubes was established by varying the carbon chain length of the thioether stabilizing ligands and the reaction time to produce stable and controlled growth. In this study, we found that the longer the thioether chain length, the less isotropic the shape of the particles. Short chain lengths of thioethers (ethyl sulfide and butyl sulfide) produced spherical nanoparticles, whereas longer chain lengths (hexyl sulfide and octyl sulfide) produced cubic nanoparticles. In addition, parameters such as the ligand to precursor ratio also played an important role in the homogeneity of the nanocubes. The Ru NCs were characterized by UV-visible absorbance spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), which supported a face-centered cubic (fcc) structure. Moreover, to demonstrate catalytic efficiency, we studied their ability to reduce benzaldehyde to benzyl alcohol, and the Ru NCs demonstrated an overall 78% efficiency at room temperature.

3.
Sensors (Basel) ; 23(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36772265

ABSTRACT

Emerging materials integrated into high performance flexible electronics to detect environmental contaminants have received extensive attention worldwide. The accurate detection of widespread organophosphorus (OP) compounds in the environment is crucial due to their high toxicity even at low concentrations, which leads to acute health concerns. Therefore, developing rapid, highly sensitive, reliable, and facile analytical sensing techniques is necessary to monitor environmental, ecological, and food safety risks. Although enzyme-based sensors have better sensitivity, their practical usage is hindered due to their low specificity and stability. Therefore, among various detection methods of OP compounds, this review article focuses on the progress made in the development of enzyme-free electrochemical sensors as an effective nostrum. Further, the novel materials used in these sensors and their properties, synthesis methodologies, sensing strategies, analytical methods, detection limits, and stability are discussed. Finally, this article summarizes potential avenues for future prospective electrochemical sensors and the current challenges of enhancing the performance, stability, and shelf life.


Subject(s)
Biosensing Techniques , Nanostructures , Organophosphorus Compounds/analysis , Food Safety , Electronics , Nanostructures/chemistry , Electrochemical Techniques/methods , Biosensing Techniques/methods
4.
Phys Chem Chem Phys ; 23(38): 21677-21689, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34581344

ABSTRACT

Molecular magnetism in nanodomains of three isoreticular MIL-88(Fe) analogues is studied and reported. Microstructures of isoreticular extended frameworks of MIL-88B, MIL-88C, and the interpenetrated analogue of MIL-88D, i.e., MIL-126, with the trigonal prismatic 6-c acs net are synthesized by linking Fe3O inorganic cluster units with organic carboxylate linkers - benzene-1,4-dicarboxylic acid (BDC), 2,6-naphthalene dicarboxylic acid (NDC), and biphenyl-4,4'-dicarboxylic acid (BPDC), using a controlled solvent driven self-assembly process followed by a solvothermal method. The powder XRD traces are matched with the simulated diffraction patterns generated from their corresponding crystal structures, revealing the hexagonal symmetry for MIL-88B and MIL-88C, and the tetragonal symmetry for MIL-126. The elemental composition analysis confirms the empirical formula to be Fe3O(L)3 where L is the organic linker, supporting the formation of isoreticular MIL-88(Fe)-MOFs with MIL-88 topology. The morphologies of microstructures analyzed by SEM and TEM exhibit long spindle shaped rods with a core and a shell-like architecture for MIL-88B and MIL-88 C whereas MIL-126 shows cubic-shaped microstructures. The M-T plots confirm their blocking temperatures, TB, to be 60 K, 50 K, and 40 K for MIL-88B, MIL-88C, and MIL-126, respectively. The M-H plots reveal their magnetic response to be ferromagnetic at 10 K with the coercivities, HC, ranging from 250 G to 180 G. The gradual decrease in the TB and HC correlates with the nanocrystals' domain size, which decreases from MIL-88B to MIL-88C to MIL-126. Their phase transition from the ferromagnetic state to the short range ordering of the superparamagnetic state is observed in the temperature range of 100 K to 300 K. At T > TB, nanocrystals of all three MIL-88 microstructures act as a single-magnetic domain, owing to their shape anisotropy and finite-dimensionality. The electron density distribution and the spin density state modeled for each MIL-88 analogue exhibit localized electron density and spin density on Fe3O clusters, indicating the short range magnetic moment ordering in triangular metal oxide nodes with no extended magnetic cooperativity from their organic linkers. The short-range ordering of superparamagnetism in MIL-88(Fe)-MOFs suggests their further study as porous molecular-based magnets.

5.
RSC Adv ; 11(27): 16698-16705, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-35479177

ABSTRACT

Biodegradable natural polymers and macromolecules for transient electronics have great potential to reduce the environmental footprint and provide opportunities to create emerging and environmentally sustainable technologies. Creating complex electronic devices from biodegradable materials requires exploring their chemical design pathways to use them as substrates, dielectric insulators, conductors, and semiconductors. While most research exploration has been conducted using natural polymers as substrates for electronic devices, a very few natural polymers have been explored as dielectric insulators, but they possess high dielectric constants. Herein, for the first time, we have demonstrated a natural polyphenol-based nanomaterial, derived from tannic acid as a low-κ dielectric material by introducing a highly nanoporous framework with a silsesquioxane core structure. Utilizing natural tannic acid, porous "raspberry-like" nanoparticles (TA-NPs) are prepared by a sol-gel polymerization method, starting from reactive silane unit-functionalized tannic acid. Particle composition, thermal stability, porosity distribution, and morphology are analyzed, confirming the mesoporous nature of the nanoparticles with an average pore diameter ranging from 19 to 23 nm, pore volume of 0.032 cm3 g-1 and thermal stability up to 350 °C. The dielectric properties of the TA-NPs, silane functionalized tannic acid precursor, and tannic acid are evaluated and compared by fabricating thin film capacitors under ambient conditions. The dielectric constants (κ) are found to be 2.98, 2.84, and 2.69 (±0.02) for tannic acid, tannic acid-silane, and TA-NPs, respectively. The unique chemical design approach developed in this work provides us with a path to create low-κ biodegradable nanomaterials from natural polyphenols by weakening their polarizability and introducing high mesoporosity into the structure.

6.
Nanoscale Adv ; 2(7): 2897-2906, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-36132408

ABSTRACT

Augmenting the oriented attachment (OA) crystal growth phenomena, herein, we demonstrate fabrication of ultrathin CuO nanowires from self-assembled one-dimensional (1D) nanowires of Cu(OH)2 nanocrystals. A facile environmentally benign sol-gel approach, which utilizes base-catalyzed hydrolysis followed by directed self-assembly and crystal growth of nanocrystals, is developed to prepare Cu(OH)2 nanowires. The sol of Cu(OH)2 nanocrystals shows aggregative self-assembly guided by the OA crystal growth process to form ultrathin Cu(OH)2 nanowires, with an average length of 675 ± 4 nm and diameter of 6 ± 2 nm. The time-dependent UV-visible spectral traces, along with real-time imaging of nanocrystals self-assembly and growth under the transmission electron microscope, are evidenced the concept of the OA crystal growth directed self-assembly, yielding 1D colloidal nanoarrays of Cu(OH)2. The powder XRD traces collected during the self-assembly and crystal growth process reveal the directional aggregative crystal growth along the facet of [001], confirming the OA directed crystal growth and fusion of nanocrystals to yield 1D nanostructures. The gradual blue-shift in optical absorption maxima from 770 nm in initial precursor solution, to 670 nm for Cu(OH)2 nanocrystals sol, and finally to 647 nm for self-assembled 1D Cu(OH)2 nanowires have further evidenced the formation of Cu(OH)2 nanowires. Upon subjecting self-assembled Cu(OH)2 nanowires for post-annealing treatment, ultrathin CuO nanowires with average length of 7 ± 0.50 µm and diameter of 27 ± 2 nm is obtained in high purity. The experimental powder XRD patterns of Cu(OH)2 and CuO nanowires match the simulated XRD patterns, indexing the crystal unit cell structures to orthorhombic and monoclinic, respectively. The tailored narrow optical band gaps for Cu(OH)2 and CuO nanowires are found to be 1.51 eV and 1.10 eV. The theoretical band gap predicted for Cu(OH)2 nanowires is 1.52 eV and is in good agreement with its optical band gap, whereas theoretical band computed for CuO nanowires is 0.13 eV lower than from its optical band gap.

SELECTION OF CITATIONS
SEARCH DETAIL
...