Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 133(3): 2074-2082, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35737750

ABSTRACT

AIMS: This study aimed to investigate the molecular characterization and antimicrobial susceptibility of Corynebacterium pseudotuberculosis from skin abscesses of Korean native black goats (KNBG, Capra hircus coreanae) in South Korea. METHODS AND RESULTS: A total of 83 isolates were recovered from skin abscesses of KNBG. Of these isolates, 74 isolates were identified as C. pseudotuberculosis by phospholipase D (PLD) gene-based PCR assay. Each of the isolates possessed all 18 virulence genes (FagA, FagB, FagC, FagD, SigE, SpaC, SodC, PknG, NanH, OppA, OppB, OppC, OppD, OppF, CopC, NrdH and CpaE). The genetic diversity of C. pseudotuberculosis isolates was assessed by the phylogenetic analysis using the concatenated sequences (3073 bp) of five housekeeping genes (fusA, dnaK, infB, groeL1 and leuA) for investigating their genetic diversity. In the results, the isolates belonged to three groups: group 1 (67 isolates), group 2 (one isolate) and group 3 (six isolates) within biovar ovis. However, the groups exhibited low genetic diversity (0.20%-0.41%). In the antimicrobial susceptibility test, most isolates were susceptible to tetracycline, vancomycin, chloramphenicol, ciprofloxacin, erythromycin, enrofloxacin, cefoxitin, ampicillin, gentamycin, cephalothin and doxycycline, whereas they were not susceptible to cefotaxime, trimethoprim and streptomycin. CONCLUSION: This results suggest the involvement of relatively few clones of C. pseudotuberculosis in Korea. Further, present isolates can threaten public health due to potentially virulent strains with all 18 virulence genes and non-susceptible strains to clinically important antibiotics (CIA) and highly important antibiotics. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first to investigate the genetic diversity and potential pathogenicity of C. pseudotuberculosis biovar ovis isolates from skin abscesses of KBNG in South Korea, and could provide useful information in controlling its infections.


Subject(s)
Corynebacterium pseudotuberculosis , Abscess/veterinary , Animals , Anti-Bacterial Agents/pharmacology , Corynebacterium pseudotuberculosis/genetics , Goats/microbiology , Phylogeny , Sheep
2.
Microb Drug Resist ; 25(4): 611-618, 2019 May.
Article in English | MEDLINE | ID: mdl-30427748

ABSTRACT

Development of antibiotic resistance in bacteria has challenged significantly in both veterinary and human medicine. In this study, we analyzed the potential risk of pet turtles harboring tribe Proteeae as a source of quinolone-resistant determinants, including plasmid-mediated quinolone resistance (PMQR) genes and target gene alterations in the quinolone resistance-determining region (QRDR). Antimicrobial susceptibility of 54 Proteeae isolates against ciprofloxacin, ofloxacin, levofloxacin, and nalidixic acid was examined. The PMQR genes and QRDR alterations were identified using conventional PCR assays and sequencing. Four isolates were resistant to all quinolones tested in this study. Nine isolates showed resistance to nalidixic acid and showed either intermediate resistance or susceptibility to other tested quinolones. All isolates resistant to one or more tested quinolones harbored mutations in gyrB and some also had gyrA and parC mutations. Of 54, 12 Proteeae isolates displayed the novel E466D, N440T, Q411S, and F417L mutations in gyrB. Among the PMQR genes, 41 (76%) isolates harbored the qnrD gene with the highest prevalence, whereas aac(6')Ib-cr, qnrS, qnrA, and qnrB genes were detected in 28 (52%), 9 (17.0%), 7 (13.0%), and 1 (1.9%) study isolates, respectively. The QRDR analysis of selected mutants revealed that increasing quinolone selective pressure led to a predominance of gyrA mutants. All results indicate that a healthy pet turtle can play as a potential reservoir for quinolone-resistant Proteeae, which it might cause public health risk on pet owners.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , DNA Gyrase/genetics , Drug Resistance, Bacterial/genetics , Mutation/genetics , Quinolones/pharmacology , Turtles/microbiology , Animals , DNA Topoisomerase IV/genetics , Drug Resistance, Bacterial/drug effects , Humans , Mutation/drug effects , Nalidixic Acid/pharmacology , Prevalence
3.
Microb Drug Resist ; 24(8): 1217-1225, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29420133

ABSTRACT

Aeromonas spp. are opportunistic pathogens related to multiple infectious diseases in ornamental fishes. In the present study, the antimicrobial susceptibility, resistance genes, and integrons of 65 goldfish-borne Aeromonas spp. were evaluated. The isolates were identified as A. hydrophila (n = 30), A. veronii (n = 32), and A. punctata (n = 3) by gyrB sequencing. The antimicrobial susceptibility testing of the isolates designated that most of the isolates were resistant to amoxicillin (100.00%), nalidixic acid (100.00%), ampicillin (98.46%), tetracycline (92.31%), rifampicin (86.15%), and cephalothin (61.54%) and each of the isolates showed multiple antimicrobial resistance phenotype (resistant to ≥3 classes of antimicrobials). PCR amplification of antimicrobial resistance genes revealed that the plasmid-mediated quinolone resistance gene, qnrS, was the most prevalent (73.85%) among the isolates. The other antimicrobial resistance genes were detected in the following proportions: qnrB (26.15%), aac(6')-Ib-cr (4.60%), tetA (16.92%), tetE (21.54%), aac(6')-Ib (29.23%), and aphAI-IAB (7.69%). The IntI gene was found in 64.62% isolates, and four class 1 integron gene cassette profiles (incomplete dfrA1, catB3-aadA1, dfrA1-orfC, and qacE2-orfD) were identified. These data suggest that goldfish-borne Aeromonas spp. serve as a reservoir of antimicrobial resistance genes and class 1 integrons.


Subject(s)
Aeromonas/genetics , Drug Resistance, Multiple, Bacterial/genetics , Goldfish/microbiology , Gram-Negative Bacterial Infections/microbiology , Integrons/genetics , Aeromonas/drug effects , Animals , Anti-Bacterial Agents/pharmacology , DNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/drug effects , Microbial Sensitivity Tests/methods , Plasmids/genetics , Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...