Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Res Sq ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38746312

ABSTRACT

BACKGROUND: Patients with hemorrhagic shock and trauma (HS/T) are vulnerable to the endotheliopathy of trauma (EOT), characterized by vascular barrier dysfunction, inflammation, and coagulopathy. Cellular therapies such as mesenchymal stem cells (MSCs) and MSC extracellular vesicles (EVs) have been proposed as potential therapies targeting the EOT. In this study we investigated the effects of MSCs and MSC EVs on endothelial and epithelial barrier integrity in vitro and in vivo in a mouse model of HS/T. This study addresses systemic effects of HS/T on multiorgan EOT in HS/T model. METHODS: In vitro, pulmonary endothelial cell (PEC) and Caco-2 intestinal epithelial cell monolayers were treated with control media, MSC conditioned media (CM), or MSC EVs in varying doses and subjected to a thrombin or hydrogen peroxide (H2O2) challenge, respectively. Monolayer permeability was evaluated with a cell impedance assay, and intercellular junction integrity was evaluated with immunofluorescent staining. In vivo, a mouse model of HS/T was used to evaluate the effects of lactated Ringer's (LR), MSCs, and MSC EVs on endothelial and epithelial intercellular junctions in the lung and small intestine as well as on plasma inflammatory biomarkers. RESULTS: MSC EVs and MSC CM attenuated permeability and preserved intercellular junctions of the PEC monolayer in vitro, whereas only MSC CM was protective of the Caco-2 epithelial monolayer. In vivo, both MSC EVs and MSCs mitigated the loss of endothelial adherens junctions in the lung and small intestine, though only MSCs had a protective effect on epithelial tight junctions in the lung. Several plasma biomarkers including MMP8 and VEGF were elevated in LR- and EV-treated but not MSC-treated mice. CONCLUSIONS: In conclusion, MSC EVs could be a potential cell-free therapy targeting endotheliopathy after HS/T via preservation of the vascular endothelial barrier in multiple organs early after injury. Further research is needed to better understand the immunomodulatory effects of these products following HS/T and to move toward translating these therapies into clinical studies.

2.
Cytotherapy ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38506768

ABSTRACT

BACKGROUND AIMS: In this paper, we present a review of several selected talks presented at the CTTACC conference (Cellular Therapies in Trauma and Critical Care) held in Scottsdale, AZ in May 2023. This conference review highlights the potential for cellular therapies to "reset" the dysregulated immune response and restore physiologic functions to normal. Improvements in medical care systems and technology have increasingly saved lives after major traumatic events. However, many of these patients have complicated post-traumatic sequelae, ranging from short-term multi-organ failure to chronic critical illness. METHODS/RESULTS: Patients with chronic critical illness have been found to have dysregulated immune responses. These abnormal and harmful immune responses persist for years after the initial insult and can potentially be mitigated by treatment with cellular therapies. CONCLUSIONS: The sessions emphasized the need for more research and clinical trials with cellular therapies for the treatment of a multitude of chronic illnesses: post-trauma, radiation injury, COVID-19, burns, traumatic brain injury (TBI) and other chronic infections.

3.
J Trauma Acute Care Surg ; 96(4): 634-640, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37599420

ABSTRACT

BACKGROUND: Trauma is the third leading cause of death in the United States and the primary cause of death for people between the ages of 1 year and 44 years. In addition to tissue damage, trauma may also activate an inflammatory state known as trauma-induced coagulopathy (TIC) that is associated with clotting malfunctions, acidemia, and end-organ dysfunction. Prior work has also demonstrated benefit to acknowledging the type and severity of endothelial injury, coagulation derangements, and systemic inflammation in the management of trauma patients. This study builds upon prior work by combining laboratory, metabolic, and clinical metrics into an analysis of trauma phenotypes, evolution of phenotypes over time after trauma, and significance of trauma phenotype on mortality. METHODS: Seventy 3-month-old female Yorkshire crossbred swine were randomized to injury and resuscitation groups. Principal component analysis (PCA) of longitudinal swine TEG data (Reaction time, Alpha-Angle, Maximum Amplitude, and Clot Lysis at 30 minutes), pH, lactate, and MAP was completed in R at baseline, 1 hour postinjury, 3 hours postinjury, 6 hours postinjury, and 12 hours postinjury. Subjects were compared by principal component factor scores to assess differences in survival, injury severity, and treatment group. RESULTS: Among injured animals, three phenotypes were observed at each time point. Five phenotypes were associated with differences in survival, and of these, four were associated with differences in injury severity. Phenotype alignment was not significantly different by treatment group. CONCLUSION: This application of PCA to a set of coagulation, hemodynamic, and organ perfusion variables has identified multiple evolving phenotypes after trauma. Some of these phenotypes may correlate with injury severity and may have implications for survival. Next steps include validating these findings over greater numbers of subjects and exploring other machine-learning techniques for phenotype identification. LEVEL OF EVIDENCE: Level IV, Therapeutic/Care Management.


Subject(s)
Blood Coagulation Disorders , Wounds and Injuries , Animals , Female , Humans , Infant , Blood Coagulation Disorders/etiology , Phenotype , Principal Component Analysis , Resuscitation/methods , Swine , Thrombelastography/methods , Wounds and Injuries/complications
4.
J Trauma Acute Care Surg ; 96(2): 195-202, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37880827

ABSTRACT

BACKGROUND: This study aimed to understand the altered innate immune response in severely injured patients leading to chronic critical illness (CCI). Specifically, it focused on characterizing the monocyte populations and their correlation with CCI development and long-term complications. METHODS: Over a 3-year period, we monitored patients with severe injuries for up to 1-year postinjury. Chronic critical illness was defined as an ICU stay exceeding 14 days with persistent organ failure. Blood samples were collected on Days 1 and 5 for monocyte phenotypic expression analysis using cytometry by time flight. The monocyte subpopulations studied were classical (CL), intermediate (INT), and nonclassical (NC), along with cell surface receptor expression and activation. RESULTS: Out of 80 enrolled patients, 26 (32.5%) developed CCI. Patients with CCI had more severe injuries (Injury Severity Score, 32.4 + 5.2 vs. 29.6 + 4.1, p = 0.01) and received a higher number of red blood cells (8.9 + 4.1 vs. 4.7 + 3.8 units, p < 0.01) compared with those without CCI. In patients with CCI, the NC monocytes were significantly reduced by over twofold early, and significantly increased later, compared with those without CCI. Moreover, significant changes in intracellular cytokine expression and cell receptors were observed within each monocyte subpopulation in patients with CCI, indicating an increased proinflammatory phenotype but decreased phagocytic capacity and antigen presentation. The development of CCI and the presence of this unique monocyte phenotype were associated with a significantly increased risk of infection, discharge to a long-term care facility, and 1-year mortality of 27%. CONCLUSION: Development of CCI following severe injury is associated with significant long-term morbidity and unacceptably high mortality. The altered NC phenotype with reduced phagocytic capacity and antigen presentation in patients developing CCI after severe injury is appears partially responsible. Early identification of this unique phenotype may help predict and treat patients at risk for CCI, leading to improved outcomes. LEVEL OF EVIDENCE: Prognostic and Epidemiological; Level III.


Subject(s)
Brain Injuries, Traumatic , Monocytes , Humans , Monocytes/metabolism , Critical Illness , Phenotype , Brain Injuries, Traumatic/metabolism , Prognosis
5.
J Trauma Acute Care Surg ; 96(3): 364-370, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38011031

ABSTRACT

BACKGROUND: Hemorrhage accounts for the most preventable deaths after trauma. Resuscitation is guided by studies that demonstrate improved outcomes in patients receiving whole blood or balanced administration of blood products. Platelets present a logistical challenge due to short shelf life and need for refrigeration. Platelet-derived extracellular vesicles (PEVs) are a possible platelet alternative. Platelet-derived extracellular vesicles are secreted from platelets, have hemostatic effects and mitigate inflammation and vascular injury, similar to platelets. This pilot study aimed to elucidate the therapeutic effects of PEVs in a rat model of uncontrolled hemorrhage. METHODS: Male rats were anesthetized and femoral vessels cannulated. Vital signs (MAP, HR, and RR) were monitored. Electrolytes, lactate and ABG were obtained at baseline, 1-hour and 3-hours post injury. Laparotomy was performed, 50% of the middle hepatic lobe excised and the abdomen packed with gauze. Rats received 2 mL PEVs or lactated Ringers (LR) over 6 minutes immediately after injury. Peritoneal blood loss was quantified using preweighed gauze at 5 minutes, 15 minutes, 30 minutes, 45 minutes, and 60 minutes. Laparotomy was closed 1-hour postinjury. Animals were monitored for 3 hours postinjury then euthanized. Generalized Linear Mixed Effects models were performed to assess effects of treatment and time on lactate and MAP. RESULTS: Twenty-one rats were included (11 LR, 10 PEV). Overall blood loss was between 6 mL and 10 mL and not significantly different between groups. There was a 36% mortality rate in the LR group and 0% mortality in the PEV group ( p = 0.03). The LR group had significantly higher lactates at 1 hour ( p = 0.025). At 15 minutes, 45 minutes, 60 minutes, and 180 minutes, the MAP of the PEV group was significantly higher than the LR group. CONCLUSION: Early studies are encouraging regarding the potential use of PEVs in uncontrolled hemorrhagic shock based on improved survival and hemodynamics.


Subject(s)
Extracellular Vesicles , Shock, Hemorrhagic , Humans , Rats , Male , Animals , Shock, Hemorrhagic/drug therapy , Pilot Projects , Hemorrhage/drug therapy , Resuscitation , Lactic Acid , Isotonic Solutions/pharmacology , Isotonic Solutions/therapeutic use , Disease Models, Animal
6.
Cytotherapy ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38043052

ABSTRACT

BACKGROUND AIMS: Culture-derived mesenchymal stromal cells (MSCs) exhibit variable characteristics when manufactured using different methods, source material and culture media. The purpose of this multicenter study was to assess the impact on MSC expansion, gene expression and other characteristics when different laboratories expanded MSCs from cultures initiated with bone marrow-MSC aliquots derived from the same donor source material yet with different growth media. METHODS: Eight centers expanded MSCs using four human platelet lysate (HPL) and one fetal bovine serum (FBS) products as media supplements. The expanded cells were taken through two passages then assessed for cell count, viability, doubling time, immunophenotype, cell function, immunosuppression and gene expression. Results were analyzed by growth media and by center. RESULTS: Center methodologies varied by their local seeding density, feeding regimen, inoculation density, base media and other growth media features (antibiotics, glutamine, serum). Doubling times were more dependent on center than on media supplements. Two centers had appropriate immunophenotyping showing all MSC cultures were positive for CD105, CD73, CD90 and negative for CD34, CD45, CD14, HLA-DR. MSCs cultured in media supplemented with FBS compared with HPL featured greater T-cell inhibition potential. Gene expression analysis showed greater impact of the type of media supplement (HPL versus FBS) than the manufacturing center. Specifically, nine genes were decreased in expression and six increased when combining the four HPL-grown MSCs versus FBS (false discovery rate [FDR] <0.01), however, without significant difference between different sources of HPL (FDR <0.01). CONCLUSIONS: Local manufacturing process plays a critical role in MSC expansion while growth media may influence function and gene expression. All HPL and FBS products supported cell growth.

7.
J Trauma Acute Care Surg ; 95(4): 529-534, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37314745

ABSTRACT

BACKGROUND: Cryoprecipitate (CP) can augment hemostasis after hemorrhagic shock (HS). Similar to fresh frozen plasma (FFP), CP may provide short-term endothelial protection. We tested a new 5-day postthaw CP (5-day pathogen-reduced cryoprecipitate [5PRC]) and lyophilized pathogen-reduced cryoprecipitate (LPRC) to overcome challenges of early administration and hypothesized that 5PRC and LPRC would provide lasting organ protection in a rodent model of HS. METHODS: Mice underwent trauma/HS (laparotomy then HS), mean arterial pressure (MAP) 35 × 90 minutes, and then 6 hours of hypotensive resuscitation (MAP, 55-60 mm Hg) with lactated Ringer's solution (LR), FFP, CP, 5PRC, or LPRC and compared with shams. Animals were followed for 72 hours. Organs and blood were collected. Data are presented as mean ± SD and analysis of variance with Bonferroni post hoc. RESULTS: Mean arterial pressure was comparable between experimental groups at baseline, preresuscitation, and 6 hours per protocol. However, volume needed to resuscitate to target MAP over 6 hours was less than half for CP, 5PRC, LPRC, and FFP compared with LR, suggesting that CP products can serve as effective resuscitative agents. Mean arterial pressure at 72 hours was also significantly higher in the CP, 5PRC, and FFP groups compared with LR. Resuscitation with CP, 5PRC, and LPRC provided lasting protection from gut injury and enhanced syndecan immunostaining comparable with FFP, while LR mice demonstrated persistent organ dysfunction. Sustained endothelial protection was demonstrated by lessened lung permeability, while cystatin C was an indicator of kidney function, and liver aspartate aminotransferase and alanine transaminase returned to sham levels in all groups. CONCLUSION: Cryoprecipitate products can provide lasting organ protection comparable with FFP in a sustained rodent model of trauma/HS and hypotensive resuscitation. The availability of 5PRC and LPRC will allow for investigation into the immediate use of cryoprecipitate for severely injured patients. As lyophilized products such as cryoprecipitate become available clinically, their use has important implications for prehospital, rural, and battlefield usage.


Subject(s)
Rodentia , Shock, Hemorrhagic , Humans , Mice , Animals , Shock, Hemorrhagic/therapy , Lung , Endothelium , Plasma
8.
J Trauma Acute Care Surg ; 95(2S Suppl 1): S137-S143, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37211640

ABSTRACT

BACKGROUND: Recent studies in severely injured patients suggest an important role of von Willebrand Factor (VWF) and ADAMTS13 in the endotheliopathy of trauma (EoT). We hypothesized that the early use of cryoprecipitate would be effective as an endothelial protector by supplementing physiologic VWF and ADAMTS13 to reverse the EoT. We tested a pathogen-reduced lyophilized cryoprecipitate (LPRC) that could expedite the early administration of cryoprecipitate in the battlefield. METHODS: A mouse multiple-trauma model with uncontrolled hemorrhage (UCH) from liver injury was utilized followed by hypotensive resuscitation (mean arterial pressure, 55-60) × 3 hours with lactated Ringer's (LR), fresh frozen plasma (FFP), conventional pathogen-reduced cryoprecipitate (CC), and LPRC. Blood was collected for measurement of syndecan-1, VWF, and ADAMTS13 by ELISA. Lungs were stained for histopathologic injury and syndecan-1 and bronchial alveolar lavage (BAL) fluid harvested for protein as an indicator of permeability. Statistical analysis was by ANOVA followed by Bonferroni correction. RESULTS: Following multiple trauma and UCH, blood loss was similar across groups. Mean volume of resuscitation was higher in the LR group compared with the other resuscitation groups. Lung histopathologic injury, syndecan-1 immunostaining and BAL protein were higher with LR compared with resuscitation with FFP and CC, while LPRC further reduced BAL compared with FFP and CC. The ADAMTS13/VWF ratio was significantly lower in LR but improved with FFP and CC, comparable to shams while LPRC further increased this ratio. CONCLUSION: The protective effects of CC and LPRC were comparable to FFP in ameliorating the EoT in our murine multiple trauma and UCH model. Lyophilized cryoprecipitate may also provide additional benefit by enhancing the ADAMTS13/VWF ratio. These data provide evidence of the safety and efficacy of LPRC and warrants further investigation for its potential application in military settings once approved for human administration.


Subject(s)
Lung Injury , Multiple Trauma , Humans , Mice , Animals , von Willebrand Factor/metabolism , Lung Injury/etiology , Lung Injury/prevention & control , Syndecan-1/metabolism , Hemorrhage/etiology , Hemorrhage/therapy , ADAMTS13 Protein
9.
Blood Adv ; 7(7): 1241-1257, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36375044

ABSTRACT

Platelets (PLTs) stored at 4°C exhibit equivalent or superior hemostatic function compared with 22°C PLTs, but have shorter circulation times and a decreased ability to modulate vascular permeability. These differences may be due to morphological changes and storage-induced activation. Using a proteomics-based approach, we found that 4°C-stored PLTs express decreased α-tubulin, a key PLT structural protein. PLT activation is characterized by α-tubulin deacetylation, which is regulated by histone deacetylase-6 (HDAC-6). We hypothesized that inhibition of HDAC-6 in stored PLTs will improve their ability to regulate vascular permeability through reduced activation and α-tubulin deacetylation. In an in vivo model of vascular permeability, treatment of 4°C PLTs with the HDAC-6 inhibitor tubacin enhanced the vasculoprotective properties of untreated 4°C PLTs. 4°C PLT circulation, however, was unchanged by tubacin treatment, suggesting that circulation time may not be a critical factor in determining the vasculoprotective effects of PLTs. Assessing the factor content of stored PLTs revealed that angiopoietin-1 (Ang-1) increased in 4°C PLTs over time, which was further enhanced by tubacin treatment. In addition, angiopoietin-2, an inducer of vascular leak and antagonist of Ang-1, inhibited PLT barrier protection, suggesting involvement of the Tie-2 pathway. This study demonstrates that HDAC-6 inhibition with tubacin attenuates the diminished vasculo-protective properties of 4°C PLTs, and these properties may be independent of PLT circulation time.


Subject(s)
Blood Platelets , Tubulin , Blood Platelets/metabolism , Histone Deacetylases/metabolism , Histone Deacetylases/pharmacology , Permeability , Tubulin/metabolism , Temperature
10.
Shock ; 58(4): 313-320, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36256627

ABSTRACT

ABSTRACT: Introduction: The endotheliopathy of trauma develops early after injury and consists of increased vascular permeability, inflammation, and dysfunctional coagulation. Persistence of these abnormalities ultimately leads to multiorgan failure. We hypothesized that extending an established 3-hour acute mouse model of hemorrhagic shock and trauma (HS/T) to a 24-hour survival model would allow for evaluation of persistent endotheliopathy and organ injury after HS/T. Methods: Adult male C57BL/6J mice underwent laparotomy, femoral artery cannulation, and blood withdrawal to induce HS to a MAP of 35 mm Hg for 90 minutes. Mice were resuscitated with either lactated Ringer's (LR) or fresh frozen plasma (FFP). Vascular permeability in the lung and gut was assessed by measuring extravasation of a fluorescent dextran dye. Lungs were evaluated for histopathologic injury, and immunofluorescent staining was used to evaluate intercellular junction integrity. Pulmonary inflammatory gene expression was evaluated using NanoString (Seattle, WA). All endpoints were evaluated at both 3 and 24 hours after initiation of shock. Results: Lactated Ringer's- and FFP-treated mice had an equal mortality rate of 17% in the 24-hour model. Lactated Ringer's-treated mice demonstrated increased vascular permeability in the lung and gut at 3 hours compared with sham mice (lung, P < 0.01; gut, P < 0.001), which was mitigated by FFP treatment (lung, P < 0.05; gut, P < 0.001). Twenty-four hours after shock, however, there were no differences in vascular permeability between groups. Similarly, although at 3 hours, the lungs of LR-treated mice demonstrated significant histopathologic injury, loss of tight and adherens junctions, and a pro-inflammatory gene expression profile at 3 hours, these endpoints in LR mice were similar to sham mice by 24 hours. Conclusions: In an established mouse model of HS/T, endotheliopathy and lung injury are evident at 3 hours but recover by 24 hours. Polytrauma models or larger animal models allowing for more severe injury coupled with supportive care are likely necessary to evaluate endotheliopathy and organ injury outside of the acute period.


Subject(s)
Shock, Hemorrhagic , Animals , Male , Mice , Dextrans , Disease Models, Animal , Mice, Inbred C57BL , Resuscitation , Ringer's Lactate , Shock, Hemorrhagic/metabolism
11.
J Trauma Acute Care Surg ; 93(5): 572-578, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35939376

ABSTRACT

BACKGROUND: It has been shown that microRNA-19b (miR-19b) binds to and degrades syndecan-1 after hemorrhagic shock (HS) and contributes to endothelial dysfunction in vitro and in vivo. The objective of the current study was to assess longitudinal changes in miR-19b and syndecan-1 in HS patients. METHODS: Blood samples from HS patients (blood pressure <90 mm Hg and ≥2 U blood) were collected upon admission, completion of hemostasis, and after 24 hours for miR-19b (quantitative reverse transcription PCR) and syndecan-1 (enzyme-linked immunosorbent assay) and compared with controls and minimally injured (Injury Severity Score, ≤9). Inflammatory cytokines were measured (Luminex [Thermo Fisher, Waltham, MA]). Correlations between syndecan-1, miR-19b, inflammatory markers, and patient outcomes were performed. Logistic regression models were developed for outcomes. RESULTS: Thirty-four HS patients were studied: age, 46 (19-89) years; male, 82%; penetrating, 35%; Injury Severity Score, 24 ± 10; and blood products at 24 hours, 21 ± 19 U. MicroRNA-19b was increased upon arrival and further increased over time: 4.6 → 6.7 → 24.1-fold change compared with 0.1 and 1.2 for minimally injured patients and controls, respectively. Syndecan-1 was increased to 42.6 → 50 → 51.5 ng/mL over time compared with 14.7 and 23.5 for minimally injured and controls, respectively. Values for both biomarkers remained significantly increased through 24 hours and were associated with a persistent increase in inflammatory cytokines. Admission syndecan-1 significantly predicted mortality, coagulopathy, and massive transfusion. CONCLUSION: We have shown for the first time that miR-19b and syndecan-1 were biomarkers for endothelial dysfunction independent of resuscitation. MicroRNA-19b did not demonstrate a strong correlation with syndecan-1 nor outcomes. Admission syndecan-1, however, remains a strong prognostic marker, but its elevation over time suggests a versatile role following HS that requires further investigation. LEVEL OF EVIDENCE: Prognostic/Epidemiological; Level II.


Subject(s)
MicroRNAs , Shock, Hemorrhagic , Humans , Male , Middle Aged , Syndecan-1/metabolism , Resuscitation , Endothelial Cells/metabolism , Biomarkers , Cytokines
12.
J Trauma Acute Care Surg ; 93(2S Suppl 1): S119-S127, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35881828

ABSTRACT

BACKGROUND: Plasma resuscitation may improve outcomes by targeting endotheliopathy induced by severe sepsis or septic shock. Given the logistical constraints of using fresh frozen plasma in military settings or areas with prolonged prehospital care, dried products such as lyophilized plasma (LP) have been developed. We hypothesized that resuscitation with LP would decrease lung injury, inflammation, and mortality in a mouse sepsis model. METHODS: Adult male C57BL/6J mice received an intraperitoneal injection of cecal slurry. Twenty-two hours later, the mice were anesthetized, the femoral artery was cannulated, and the mice were randomized to receive resuscitation with LP (10 mL/kg) or lactated Ringer's (LR; 30 mL/kg) for 1 hour. At 48-hours post-cecal slurry injection, bronchoalveolar lavage fluid was collected, the lungs were harvested, and plasma was obtained. Mortality and bronchoalveolar lavage total protein concentration (as an indicator of permeability) were compared between groups. The lungs were analyzed for histopathology and inflammatory gene expression using NanoString, and the plasma was analyzed for biomarkers of inflammation and endothelial function. RESULTS: There was no significant difference in short-term mortality between LR and LP mice, 38% versus 47%, respectively ( p = 0.62). Bronchoalveolar lavage protein levels were similar among mice resuscitated with LR or LP, and there was a lack of significant histopathologic lung injury in all groups. However, LP resuscitation resulted in downregulation of pulmonary inflammatory genes, including signaling pathways such as Janus kinase-signal transducer and activator of transcription and nuclear factor κB, and a circulating inflammatory biomarker profile similar to sham animals. CONCLUSION: Resuscitation with LP did not improve mortality or reduce permeability or injury in this model compared with LR. However, LP downregulated pulmonary inflammatory gene signaling and may also reduce circulating biomarkers of inflammation. Future studies should evaluate LP resuscitation in combination with antibiotics and other therapeutics to determine whether the anti-inflammatory effects of LP may improve outcomes in sepsis.


Subject(s)
Lung Injury , Sepsis , Shock, Hemorrhagic , Animals , Male , Mice , Disease Models, Animal , Gene Expression , Inflammation/therapy , Mice, Inbred C57BL , Plasma , Resuscitation/methods , Sepsis/genetics , Sepsis/therapy , Shock, Hemorrhagic/therapy
13.
Matrix Biol Plus ; 14: 100107, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35392184

ABSTRACT

Severely injured patients with hemorrhagic shock can develop endothelial dysfunction, systemic inflammation, and coagulation disturbances collectively known as the endotheliopathy of trauma (EOT). Shedding of the endothelial glycocalyx occurs early after injury, contributes to breakdown of the vascular barrier, and plays a critical role in the pathogenesis of multiple organ dysfunction, leading to poor outcomes in trauma patients. In this review we discuss (i) the pathophysiology of endothelial glycocalyx and vascular barrier breakdown following hemorrhagic shock and trauma, and (ii) the role of plasma and platelet transfusion in maintaining the glycocalyx and vascular endothelial integrity.

14.
J Trauma Acute Care Surg ; 93(1): 124-129, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35261373

ABSTRACT

BACKGROUND: Moderate injury can lead to a coagulopathy. Fresh frozen plasma (FFP) corrects coagulopathy by means of a balanced array of clotting factors. We sought to compare the late effects of FFP and a prothrombin complex concentrate (PCC) on the coagulopathy of trauma using a porcine model of pulmonary contusion (PC) and hemorrhagic shock (HS) designed to evaluate the organ protective effects of these treatments. METHODS: Female Yorkshire swine (40-50 kg) were randomized to receive PC + HS or control (instrumented and uninjured). A blunt PC was created using a captive bolt gun. To induce HS, a liver crush injury was performed. Eighty minutes after injury, swine were treated with 25 U·kg-1 PCC, 1 U FFP, or 50 mL lactated Ringer's vehicle in a blinded manner. Arterial blood samples were drawn every 6 hours. Swine were euthanized 48 hours postinjury. Data were analyzed by Pearson χ2, analysis of variance and Kruskal-Wallis tests with Tukey's or Mann-Whitney U tests for post hoc analysis. RESULTS: Twenty-seven swine received PC + HS, 3 groups of 9 per group received PCC, FFP, or vehicle. Nine were noninjured controls. When compared with control, PC + HS swine had significantly shortened R time at 6 hours, 36 hours, and 42 hours, decreased LY30 at 12 hours, shortened K time at 30 hours and reduced α angle at 42 hours. PC + HS swine showed significant differences between treatment groups in K and α angle at 3 hours, LY30 at 12 hours and 18 hours, and MA at 12 hours, 18 hours, and 30 hours. Post hoc analysis was significant for higher α angle in PCC versus vehicle at 3 hours, higher MA in vehicle versus PCC at 12 hours and 18 hours, and higher LY30 in PCC versus vehicle at 18 hours (p < 0.012) with no significant differences between FFP and vehicle. CONCLUSION: Severe injury with HS induced a coagulopathy in swine. While FFP maintained normal coagulation following injury, PCC induced more rapid initial clot propagation in injured animals.


Subject(s)
Blood Coagulation Disorders , Contusions , Shock, Hemorrhagic , Thrombophilia , Animals , Female , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/therapy , Blood Coagulation Factors/pharmacology , Contusions/complications , Factor VII , Plasma , Shock, Hemorrhagic/complications , Shock, Hemorrhagic/therapy , Swine
15.
J Trauma Acute Care Surg ; 92(3): 489-498, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34882596

ABSTRACT

BACKGROUND: Hemorrhagic shock and trauma (HS/T)-induced gut injury may play a critical role in the development of multi-organ failure. Novel therapies that target gut injury and vascular permeability early after HS/T could have substantial impacts on trauma patients. In this study, we investigate the therapeutic potential of human mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC EVs) in vivo in HS/T in mice and in vitro in Caco-2 human intestinal epithelial cells. METHODS: In vivo, using a mouse model of HS/T, vascular permeability to a 10-kDa dextran dye and histopathologic injury in the small intestine and lungs were measured among mice. Groups were (1) sham, (2) HS/T + lactated Ringer's (LR), (3) HS/T + MSCs, and (4) HS/T + MSC EVs. In vitro, Caco-2 cell monolayer integrity was evaluated by an epithelial cell impedance assay. Caco-2 cells were pretreated with control media, MSC conditioned media (CM), or MSC EVs, then challenged with hydrogen peroxide (H2O2). RESULTS: In vivo, both MSCs and MSC EVs significantly reduced vascular permeability in the small intestine (fluorescence units: sham, 456 ± 88; LR, 1067 ± 295; MSC, 765 ± 258; MSC EV, 715 ± 200) and lung (sham, 297 ± 155; LR, 791 ± 331; MSC, 331 ± 172; MSC EV, 303 ± 88). Histopathologic injury in the small intestine and lung was also attenuated by MSCs and MSC EVs. In vitro, MSC CM but not MSC EVs attenuated the increased permeability among Caco-2 cell monolayers challenged with H2O2. CONCLUSION: Mesenchymal stem cell EVs recapitulate the effects of MSCs in reducing vascular permeability and injury in the small intestine and lungs in vivo, suggesting MSC EVs may be a potential cell-free therapy targeting multi-organ dysfunction in HS/T. This is the first study to demonstrate that MSC EVs improve both gut and lung injury in an animal model of HS/T.


Subject(s)
Capillary Permeability , Extracellular Vesicles/physiology , Intestine, Small/injuries , Mesenchymal Stem Cells/cytology , Shock, Hemorrhagic/therapy , Animals , Caco-2 Cells , Disease Models, Animal , Humans , Hydrogen Peroxide , Lung Injury/therapy , Mice
18.
J Trauma Acute Care Surg ; 90(6): 1022-1031, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33797484

ABSTRACT

BACKGROUND: Plasma has been shown to mitigate the endotheliopathy of trauma. Protection of the endothelium may be due in part to fibrinogen and other plasma-derived proteins found in cryoprecipitate; however, the exact mechanisms remain unknown. Clinical trials are underway investigating early cryoprecipitate administration in trauma. In this study, we hypothesize that cryoprecipitate will inhibit endothelial cell (EC) permeability in vitro and will replicate the ability of plasma to attenuate pulmonary vascular permeability and inflammation induced by hemorrhagic shock and trauma (HS/T) in mice. METHODS: In vitro, barrier permeability of ECs subjected to thrombin challenge was measured by transendothelial electrical resistance. In vivo, using an established mouse model of HS/T, we compared pulmonary vascular permeability among mice resuscitated with (1) lactated Ringer's solution (LR), (2) fresh frozen plasma (FFP), or (3) cryoprecipitate. Lung tissue from the mice in all groups was analyzed for markers of vascular integrity, inflammation, and inflammatory gene expression via NanoString messenger RNA quantification. RESULTS: Cryoprecipitate attenuates EC permeability and EC junctional compromise induced by thrombin in vitro in a dose-dependent fashion. In vivo, resuscitation of HS/T mice with either FFP or cryoprecipitate attenuates pulmonary vascular permeability (sham, 297 ± 155; LR, 848 ± 331; FFP, 379 ± 275; cryoprecipitate, 405 ± 207; p < 0.01, sham vs. LR; p < 0.01, LR vs. FFP; and p < 0.05, LR vs. cryoprecipitate). Lungs from cryoprecipitate- and FFP-treated mice demonstrate decreased lung injury, decreased infiltration of neutrophils and activation of macrophages, and preserved pericyte-endothelial interaction compared with LR-treated mice. Gene analysis of lung tissue from cryoprecipitate- and FFP-treated mice demonstrates decreased inflammatory gene expression, in particular, IL-1ß and NLRP3, compared with LR-treated mice. CONCLUSION: Our data suggest that cryoprecipitate attenuates the endotheliopathy of trauma in HS/T similar to FFP. Further investigation is warranted on active components and their mechanisms of action.


Subject(s)
Endothelium, Vascular/pathology , Lung Injury/therapy , Plasma , Shock, Hemorrhagic/therapy , Wounds and Injuries/therapy , Animals , Capillary Permeability , Disease Models, Animal , Endothelium, Vascular/cytology , Human Umbilical Vein Endothelial Cells , Humans , Lung/cytology , Lung/pathology , Lung Injury/etiology , Lung Injury/pathology , Male , Mice , Ringer's Lactate/administration & dosage , Shock, Hemorrhagic/etiology , Shock, Hemorrhagic/pathology , Wounds and Injuries/complications
19.
Stem Cell Rev Rep ; 17(4): 1194-1214, 2021 08.
Article in English | MEDLINE | ID: mdl-33420590

ABSTRACT

Traumatic injuries are a leading cause of death and disability in both military and civilian populations. Given the complexity and diversity of traumatic injuries, novel and individualized treatment strategies are required to optimize outcomes. Cellular therapies have potential benefit for the treatment of acute or chronic injuries, and various cell-based pharmaceuticals are currently being tested in preclinical studies or in clinical trials. Cellular therapeutics may have the ability to complement existing therapies, especially in restoring organ function lost due to tissue disruption, prolonged hypoxia or inflammatory damage. In this article we highlight the current status and discuss future directions of cellular therapies for the treatment of traumatic injury. Both published research and ongoing clinical trials are discussed here.


Subject(s)
Cell- and Tissue-Based Therapy , Wounds and Injuries/therapy , Humans
20.
Ann Surg ; 273(3): 395-401, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33065652

ABSTRACT

OBJECTIVE: To address the clinical and regulatory challenges of optimal primary endpoints for bleeding patients by developing consensus-based recommendations for primary clinical outcomes for pivotal trials in patients within 6 categories of significant bleeding, (1) traumatic injury, (2) intracranial hemorrhage, (3) cardiac surgery, (4) gastrointestinal hemorrhage, (5) inherited bleeding disorders, and (6) hypoproliferative thrombocytopenia. BACKGROUND: A standardized primary outcome in clinical trials evaluating hemostatic products and strategies for the treatment of clinically significant bleeding will facilitate the conduct, interpretation, and translation into clinical practice of hemostasis research and support alignment among funders, investigators, clinicians, and regulators. METHODS: An international panel of experts was convened by the National Heart Lung and Blood Institute and the United States Department of Defense on September 23 and 24, 2019. For patients suffering hemorrhagic shock, the 26 trauma working-group members met for almost a year, utilizing biweekly phone conferences and then an in-person meeting, evaluating the strengths and weaknesses of previous high quality studies. The selection of the recommended primary outcome was guided by goals of patient-centeredness, expected or demonstrated sensitivity to beneficial treatment effects, biologic plausibility, clinical and logistical feasibility, and broad applicability. CONCLUSIONS: For patients suffering hemorrhagic shock, and especially from truncal hemorrhage, the recommended primary outcome was 3 to 6-hour all-cause mortality, chosen to coincide with the physiology of hemorrhagic death and to avoid bias from competing risks. Particular attention was recommended to injury and treatment time, as well as robust assessments of multiple safety related outcomes.


Subject(s)
Clinical Trials as Topic , Hemostasis, Surgical/methods , Outcome Assessment, Health Care , Shock, Hemorrhagic/etiology , Shock, Hemorrhagic/prevention & control , Consensus , Evidence-Based Medicine , Hemostatics/therapeutic use , Humans , Patient-Centered Care , Shock, Hemorrhagic/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...