Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 829: 154643, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35306081

ABSTRACT

Microplastics are emerging pollutants that have been found in different environmental matrices of marine and coastal ecosystems, where they can generate harmful ecological impacts. Little is known about the current state of microplastic pollution in fragile tropical lagoon ecosystems, such as Ciénaga Grande de Santa Marta (CGSM) in the Caribbean coast of Colombia. This study assesses microplastic pollution in surface waters and sediments, and the occurrence of microplastic ingestion in commercially important fish species from CGSM. In waters, microplastic abundances ranged from 0.0 to 0.3 items L-1 while in sediments they varied from 0.0 to 3.1 items kg-1. The most abundant types of microplastics are fibers and fragments, with polypropylene, polyethylene and high-density polyethylene as the most abundant polymers. Also, 100 (i.e. 21.1%) out of 474 individuals from nine fish species had microplastics in their digestive tracts. Microplastics present in water and sediments and in the digestive tract of the analyzed fish species have similar characteristics, also showing a moderate and statistically significant association. Microplastic abundances are higher near river mouths and in urban areas with a high density of fishing activities and aquaculture infrastructures, which are important sources of contaminants. Microplastic pollution in CGSM represents a threat to the lagoon ecosystem and to local people depending on artisanal fishing. Consequently, effective actions to reduce pollution and its socio-environmental impacts are urgently required.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Colombia , Ecosystem , Environmental Monitoring , Humans , Plastics , Polyethylene , Water , Water Pollutants, Chemical/analysis
2.
J Appl Microbiol ; 132(4): 2705-2720, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34856041

ABSTRACT

AIMS: To evaluate the biological activity of extracts from cultures of marine bacteria against Toxoplasma gondii and Mycobacterium tuberculosis. METHODS AND RESULTS: Ethyl acetate extracts obtained from seven marine bacteria were tested against T. gondii GFP-RH and M. tuberculosis H37Rv. The cytotoxicity on HFF-1 cells was measured by a microplate resazurin fluorescent approach, and the haemolytic activity was determined photometrically. The extracts from Bacillus sp. (INV FIR35 and INV FIR48) affected the tachyzoite viability. The extracts from Bacillus, Pseudoalteromonas, Streptomyces and Micromonospora exhibited effects on infection and proliferation processes of parasite. Bacillus sp. INV FIR48 extract showed an minimum inhibitory concentration value of 50 µg ml-1 against M. tuberculosis H37Rv. All the extracts exhibited relatively low toxicity to HFF-1 cells and the primary culture of erythrocytes, except Bacillus sp. INV FIR35, which decreased cell viability under 20%. Liquid chromatography coupled to mass spectrometry analysis of the most active bacterial extract Bacillus sp. INV FIR48 showed the presence of peptide metabolites related to surfactin. CONCLUSIONS: The extract from culture of deep-sea Bacillus sp. INV FIR48 showed anti-T. gondii and anti-tuberculosis (TB) biological activity with low cytotoxicity. In addition, peptide metabolites were detected in the extract. SIGNIFICANCE AND IMPACT OF THE STUDY: Toxoplasmosis and TB are among the most prevalent diseases worldwide, and the current treatment drugs exhibit side effects. This study confirm that marine bacteria are on hand sources of anti-infective natural products.


Subject(s)
Mycobacterium tuberculosis , Toxoplasma , Tuberculosis , Humans , Microbial Sensitivity Tests , Plant Extracts/pharmacology , Tuberculosis/drug therapy
3.
Sci Rep ; 11(1): 16286, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381106

ABSTRACT

Biosurfactants are amphiphilic surface-active molecules of microbial origin principally produced by hydrocarbon-degrading bacteria; in addition to the bioremediation properties, they can also present antimicrobial activity. The present study highlights the chemical characterization and the antimicrobial activities of biosurfactants produced by deep-sea marine bacteria from the genera Halomonas, Bacillus, Streptomyces, and Pseudomonas. The biosurfactants were extracted and chemically characterized through Chromatography TLC, FT-IR, LC/ESI-MS/MS, and a metabolic analysis was done through molecular networking. Six biosurfactants were identified by dereplication tools from GNPS and some surfactin isoforms were identified by molecular networking. The half-maximal inhibitory concentration (IC50) of biosurfactant from Halomonas sp. INV PRT125 (7.27 mg L-1) and Halomonas sp. INV PRT124 (8.92 mg L-1) were most effective against the pathogenic yeast Candida albicans ATCC 10231. For Methicillin-resistant Staphylococcus aureus ATCC 43300, the biosurfactant from Bacillus sp. INV FIR48 was the most effective with IC50 values of 25.65 mg L-1 and 21.54 mg L-1 for C. albicans, without hemolytic effect (< 1%), and non-ecotoxic effect in brine shrimp larvae (Artemia franciscana), with values under 150 mg L-1, being a biosurfactant promising for further study. The extreme environments as deep-sea can be an important source for the isolation of new biosurfactants-producing microorganisms with environmental and pharmaceutical use.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacteria/chemistry , Surface-Active Agents/chemistry , Geologic Sediments/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...