Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Trans R Soc Trop Med Hyg ; 117(2): 118-127, 2023 02 01.
Article in English | MEDLINE | ID: mdl-35917814

ABSTRACT

BACKGROUND: Snakebite envenoming remains a relevant public health problem in tropical and subtropical countries. In Ecuador, this is particularly true in an area of great diversity like the Amazon region. Nevertheless, there is scarce information about epidemiological and clinical characteristics of these accidents in this area. METHODS: This was a descriptive and retrospective study of snakebite cases treated at a tertiary hospital in the Napo Province, Ecuadorian Amazon, from 2015 to 2019. We collected sociodemographic and snakebite-related information, clinical aspects and the use of antivenom and antibiotics from medical records. RESULTS: Information from 133 snakebite accidents was reviewed in this time period. Reports of snakebite envenoming decreased over the years. In total, 67% of those bitten were from nearby indigenous communities, which were the most affected groups. When a species was identified, Bothrops atrox was responsible for the highest number of cases registered. Local clinical manifestations were more frequent than systemic signs, in keeping with the typical effects produced by bothropic venoms. Additionally, data showed that more antivenom vials were given than those suggested by the protocol of the Ecuadorian Ministry of Health, in proportion to the grade of severity. Finally, we identified a low incidence of adverse reactions with antivenom administration, as well as a frequent use of antibiotics. CONCLUSIONS: The profile of snakebite accidents in the Napo Province is very similar to that described for other localities in the Amazon region of Ecuador and neighboring countries, with its challenges and limitations. Such aspects underlie the importance of establishing a robust and science-based public health program to respond to this frequent, but neglected, tropical disease.


Subject(s)
Snake Bites , Humans , Snake Bites/drug therapy , Snake Bites/epidemiology , Antivenins/therapeutic use , Ecuador/epidemiology , Retrospective Studies , Public Health
2.
Toxicon ; 193: 63-72, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33503404

ABSTRACT

Bothrops atrox is the most clinically relevant snake species within the Amazon region, which includes Ecuadorian territories. It comprises a large distribution, which could contribute to the genetic and venomic variation identified in the species. The high variability and protein isoform diversity of its venom are of medical interest, since it can influence the clinical manifestations caused by envenomation and its treatment. However, in Ecuador there is insufficient information on the diversity of venomic phenotypes, even of relevant species such as B. atrox. Here, we characterized the biochemical and toxicological profiles of the venom of six B. atrox individuals from the Ecuadorian Amazon. Differences in catalytic activities of toxins, elution profiles in liquid chromatography, electrophoretic patterns, and toxic effects among the analyzed samples were identified. Nonetheless, in the preclinical testing of antivenom, two samples from Mera (Pastaza) required a higher dose to achieve total neutralization of lethality and hemorrhage. Taken together, these data highlight the importance of analyzing individual venoms in studies focused on the outcomes of envenoming.


Subject(s)
Bothrops , Crotalid Venoms , Animals , Antivenins/therapeutic use , Crotalid Venoms/toxicity , Ecuador , Snakes
3.
Article in English | MEDLINE | ID: mdl-31911190

ABSTRACT

Bothrops asper and Bothrops atrox are important venomous snakes from Ecuador responsible for the most of ophidic accidents, which in the past were treated with a national polyvant antivenom. For years, the venom pools were collected and stored at room temperature in a laboratory. Taking into account the controversial ability of desiccated samples to retain their biological effects and enzymatic activities, we investigated the biochemical and toxicological properties of venoms after years of storage. The proteomic profiles of historical venoms analyzed by high-performance liquid chromatography and electrophoresis are very similar. The fresh batches of venom were more lethal than those stored for years, just as the initial and current LD50 values of these samples changed. Significant differences were showed in the myotoxic and hemorrhagic activity of some venom pools, while no significant statistical differences were found for the edema activity. The enzymatic assays revealed a variation in proteolytic activity on azocasein and phospholipase A2 activity, and low differences were reported for thrombin-like serine protease activity. The maintenance of the proteomic profile and certain toxicological activities convert this venom library in a valuable source for research purposes. Nonetheless, the significative reduction of toxicological activities, such as hemorrhagic activity not feasible using these samples for the antivenom production.


Subject(s)
Crotalid Venoms/chemistry , Animals , Bothrops/metabolism , Desiccation , Ecuador , Enzyme Stability , Lethal Dose 50 , Male , Mice , Proteomics , Specimen Handling
4.
Drug Dev Res ; 80(1): 68-85, 2019 02.
Article in English | MEDLINE | ID: mdl-30255943

ABSTRACT

The emergence of antibiotic resistance drives an essential race against time to reveal new molecular structures capable of addressing this alarming global health problem. Snake venoms are natural catalogs of multifunctional toxins and privileged frameworks, which serve as potential templates for the inspiration of novel treatment strategies for combating antibiotic resistant bacteria. Phospholipases A2 (PLA2 s) are one of the main classes of antibacterial biomolecules, with recognized therapeutic value, found in these valuable secretions. Recently, a number of biomimetic oligopeptides based on small fragments of primary structure from PLA2 toxins has emerged as a meaningful opportunity to overcome multidrug-resistant clinical isolates. Thus, this review will highlight the biochemical and structural properties of antibacterial PLA2 s and peptides thereof, as well as their possible molecular mechanisms of action and key roles in development of effective therapeutic strategies. Chemical strategies possibly useful to convert antibacterial peptides from PLA2 s to efficient drugs will be equally addressed.


Subject(s)
Drug Resistance, Microbial/drug effects , Phospholipases A2/isolation & purification , Phospholipases A2/pharmacology , Snake Venoms/enzymology , Snake Venoms/pharmacology , Animals , Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/pharmacology , Drug Resistance, Microbial/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...