Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(19): 12410-12423, 2021 May 18.
Article in English | MEDLINE | ID: mdl-34056392

ABSTRACT

Green synthesis, based on green chemistry, is replacing the traditional methods, aiming to contribute with an enhanced environmental sustainability, which can be achieved using nontoxic compounds from biological resources, such as natural extracts from plants. In this study, the life cycle assessment (LCA) of iron oxide nanoparticles prepared through the green synthesis and the coprecipitation method is reported by following a cradle-to-gate approach. The LCA allowed quantifying and normalized the environmental impacts produced by the green synthesis (1.0 × 10-9), which used a Cymbopogon citratus (C. citratus) extract and sodium carbonate (Na2CO3). The impacts were also determined for the coprecipitation method (1.4 × 10-8) using the iron(II) salt precursor and sodium hydroxide (NaOH). The contribution of C. citratus extract and Na2CO3 as the precursor and pH-stabilizing agents, respectively, was compared regarding the iron(II) and NaOH compounds. Environmental sustainability was evaluated in human toxicity, ecosystem quality, and resource depletion. The major environmental contribution was found in the marine aquatic ecotoxicity (7.6 × 10-10 and 1.22 × 10-8 for green synthesis and the coprecipitation method) due to the highest values for ethanol (3.5 × 10-10) and electricity (1.4 × 10-8) usage since fossil fuels and wastewater are involved in their production. The C. citratus extract (2.5 × 10-12) presented a better environmental performance, whereas Na2CO3 (4.3 × 10-11) showed a slight increase contribution compared to NaOH (4.1 × 10-11). This is related to their fabrication, involving toxic compounds, land occupation, and excessive water usage. In general, the total environmental impacts are lower for the green synthesis, suggesting the implementation of environmentally friendlier compounds based on natural sources for the production of nanomaterials.

2.
ACS Omega ; 6(5): 3644-3658, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33585745

ABSTRACT

Considering that functional magnetite (Fe3O4) nanoparticles with exceptional physicochemical properties can be highly applicable in different fields, scaling-up strategies are becoming important for their large-scale production. This study reports simulations of scaled-up production of citric acid-coated magnetite nanoparticles (Fe3O4-cit), aiming to evaluate the potential environmental impacts (PEIs) and the exergetic efficiency. The simulations were performed using the waste reduction algorithm and the Aspen Plus software. PEI and energy/exergy performance are calculated and quantified. The inlet and outlet streams are estimated by expanding the mass and energy flow, setting operating parameters of processing units, and defining a thermodynamic model for properties estimation. The high environmental performance of the production process is attributed to the low outlet rate of PEI compared to the inlet rate. The product streams generate low PEI contribution (-3.2 × 103 PEI/y) because of the generation of environmentally friendlier substances. The highest results in human toxicity potential (3.2 × 103 PEI/y), terrestrial toxicity potential (3.2 × 103 PEI/y), and photochemical oxidation potential (2.6 × 104 PEI/y) are attributed to the ethanol within the waste streams. The energy source contribution is considerably low with 27 PEI/y in the acidification potential ascribed to the elevated levels of hydrogen ions into the atmosphere. The global exergy of 1.38% is attributed to the high irreversibilities (1.7 × 105 MJ/h) in the separation stage, especially, to the centrifuge CF-2 (5.07%). The sensitivity analysis establishes that the global exergy efficiency increases when the performance of the centrifuge CF-2 is improved, suggesting to address enhancements toward low disposal of ethanol in the wastewater.

3.
ACS Omega ; 5(41): 26463-26475, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33110974

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are complex molecules produced by the thermal decomposition of organic matter in anthropogenic activities. Novel composites with enhanced physicochemical properties aim to overcome limitations such as adsorption capacity, affinity, and stability for PAHs adsorption. Composites based on chitosan are promising due to the good biocompatibility and adsorption properties. This study focuses on the facile preparation of chitosan beads modified with iron oxide (FeO) and titanium dioxide (TiO2) nanoparticles via ionic cross-linking (Ch-FeO/TiO2). FeO and TiO2 were synthesized performing co-precipitation and green chemistry methods, respectively. The characterization evidenced the formation of Ch-FeO/TiO2 with good crystallinity, excellent thermal stability, and superparamagnetic response, attributed to the presence of FeO and TiO2 nanoparticles. High thermal stability up to 270 °C was related to the cross-linked chitosan network. The enhanced adsorption mechanism of Ch-FeO/TiO2 was determined by removing naphthalene from water and seawater samples. The Ch-FeO/TiO2 showed a higher adsorption capacity of 33.1 mg/g compared to 29.8 mg/g of the unmodified chitosan (un-Ch) beads. This is due to the higher functional surface area of 27.13 m2/g, compared to that of 0.708 m2/g for un-Ch. We found a rapid adsorption rate of 240 min and the maximum adsorption capacity of 149.3 mg/g for Ch-FeO/TiO2. A large number of actives sites allows for increasing the naphthalene molecules interaction. Adsorption in seawater samples from Cartagena Bay (Colombia) exhibits an outstanding efficiency of up to 90%. These results suggest a promising, cheap, and environmentally friendly composite for remediation of water sources contaminated with complex compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...