Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(18): 6466-6475, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37106320

ABSTRACT

Nowadays, inherent antibacterial hydrogels have gained significant attention due to their utilization against infectious bacteria. Herein, we focus on the development of an injectable, self-healable, dynamic, and G-quadruplex hydrogel with inherent antibacterial activity. The dynamic self-assembled hydrogel is constructed upon multicomponent reactions (MCR) among guanosine, 2-formylphenylboronic acid, and amino acid/peptides in the presence of potassium ions. The role of amino acid/peptides in the formation of the G-quadruplex hydrogel is studied in detail. The G-quadruplex structure is formed via the π-π stacking of G-quartets. The formation of G-quadruplex is investigated by thioflavin T binding assay, CD spectroscopy, and PXRD. The formation of the dynamic imino-boronate bond in the hydrogels is well characterized by temperature-dependent 11B NMR (VT-NMR) and FT-IR spectroscopy. Furthermore, HR-TEM images and rheological experiments reveal the fibrillar networks and viscoelastic property of the hydrogels. The presence of the dynamic imino-boronate ester bonds makes the hydrogel injectable and self-healable in nature. These dynamic G-quadruplex hydrogels show potential antibacterial activity against a series of Gram-positive and Gram-negative bacteria. The hydrogels have been used for the entrapment and sustained release of an anticancer drug doxorubicin over 48 h at different pHs (4.8, 7.4, and 8.5) and temperature without the influence of any external stimuli. Such injectable and self-healable hydrogels could be used in various applications in the field of biomedical science.


Subject(s)
Anti-Bacterial Agents , Hydrogels , Anti-Bacterial Agents/pharmacology , Hydrogels/chemistry , Spectroscopy, Fourier Transform Infrared , Gram-Negative Bacteria , Gram-Positive Bacteria , Peptides , Amino Acids
2.
ACS Appl Bio Mater ; 6(2): 640-651, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36706228

ABSTRACT

The multicomponent reaction-directed self-assembled hydrogels offer the opportunities to fabricate materials with ubiquitous properties which sometimes are not possible to generate from single components. Therefore, multicomponent-derived hydrogels have enormous applications in biomedical fields, and the number of such systems is increasing day by day. Herein, the multicomponent self-assembly techniques have been employed to develop a biomimetic low-molecular-weight G-quadruplex hydrogel under physiological conditions. The bioconjugation of guanosine, 4-formylphenylboronic acid, and cytosine-functionalized nucleopeptide (NP) is important to generate the multicomponent self-assembled dynamic imino-boronate ester-mediated bioconjugated G-quadruplex hydrogels. Using thioflavin T fluorescence assay, powder X-ray diffraction, and circular dichroism spectroscopic techniques, we confirm the existence of a G-quartet-like structure as the key parameter for the formation of nanofibrillar hydrogels. The multicomponent self-assembled G-quadruplex hydrogel possesses excellent inherent antibacterial activity against a broad range of bacterial species. The in vitro cytocompatibility of the synthesized hydrogel was evaluated on MCF-7 and HEK 293T cell lines to study the biocompatibility of the hydrogel. The proposed injectable, biocompatible, and NP-coupled G-quadruplex hydrogel with inherent antibacterial efficiency holds promising importance to prevent localized bacterial infections.


Subject(s)
Anti-Bacterial Agents , Hydrogels , Hydrogels/pharmacology , Hydrogels/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...