Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 669: 444-457, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38723533

ABSTRACT

The memristors offer significant advantages as a key element in non-volatile and brain-inspired neuromorphic systems because of their salient features such as remarkable endurance, ability to store multiple bits, fast operation speed, and extremely low energy usage. This work reports the resistive switching (RS) characteristics of the hydrothermally synthesized iron tungstate (FeWO4) based thin film memristive device. The detailed physicochemical analysis was investigated using Rietveld's refinement, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) techniques. The fabricated Ag/FWO/FTO memristive device exhibits bipolar resistive switching (BRS) behavior. In addition, the devices exhibit negative differential resistance (NDR) at both positive and negative bias. The charge-flux relation portrayed the non-ideal or memristive nature of the devices. The reliability in the RS process was analyzed in detail using Weibull distribution and time series analysis techniques. The device exhibits stable and multilevel endurance and retention characteristics which demonstrates the suitability of the device for the high-density non-volatile memory application. The current conduction of the device was dominated by Ohmic and trap controlled-space charge limited current (TC-SCLC) mechanisms and filamentary RS process responsible for the BRS in the device. In a nutshell, the present investigations reveal the potential use of the iron tungstate for the fabrication of memristive devices for the non-volatile memory application.

2.
Nanotechnology ; 34(42)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37463566

ABSTRACT

In this study, we used the one-pot solvothermal method to synthesize the TiO2nanospheres (NSs) and used them for non-volatile memory and neuromorphic computing applications. Several analytical tools were used to understand the structural, optical, morphological, and compositional characteristics of synthesized TiO2NSs. The tetragonal crystal structure of anatase TiO2was formed, according to the Rietveld refined x-ray diffraction results. The NS morphology was confirmed by field emission scanning electron microscopy and transmission electron microscopy images. X-ray photoelectron spectroscopy was probed to understand the elemental composition and electronic states of the TiO2NSs. We specifically looked at the impact of reaction time on the structural, optical, morphological, compositional, and resistive switching (RS) properties of TiO2NSs. The fabricated devices (Ag/TiO2NSs/FTO) exhibit bipolar RS behavior. The optimized RS device shows good endurance (5000 cycles) and memory retention (5000 s) properties. Moreover, fabricated devices showed double-valued charge-flux characteristics, whereas charge transport was caused by the Ohmic and space charge-limited current mechanisms. Additionally, the optimized device can mimic various synaptic characteristics including potentiation-depression, excitatory post-synaptic current, and paired-pulse facilitation.

3.
J Colloid Interface Sci ; 642: 540-553, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37028161

ABSTRACT

Resistive switching (RS) memories have attracted great attention as promising solutions to next-generation non-volatile memories and computing technologies because of their simple device configuration, high on/off ratio, low power consumption, fast switching, long retention, and significant cyclic stability. In this work, uniform and adherent iron tungstate (FeWO4) thin films were synthesized by the spray pyrolysis method with various precursor solution volumes, and these were tested as a switching layer for the fabrication of Ag/FWO/FTO memristive devices. The detailed structural investigation was done through various analytical and physio-chemical characterizations viz. X-ray diffraction (XRD) and its Rietveld refinement, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) techniques. The results reveal the pure and single-phase FeWO4 compound thin film formation. Surface morphological study shows the spherical particle formation having a diameter in the range of 20 to 40 nm. The RS characteristics of the Ag/FWO/FTO memristive device demonstrate non-volatile memory characteristics with significant endurance and retention properties. Interestingly, the memory devices show stable and reproducible negative differential resistance (NDR) effects. The in-depth statistical analysis suggests the good operational uniformity of the device. Moreover, the switching voltages of the Ag/FWO/FTO memristive device were modeled using the time series analysis technique by utilizing Holt's Winter Exponential Smoothing (HWES) approach. Additionally, the device mimics bio-synaptic properties such as potentiation/depression, excitatory post-synaptic current (EPSC), and spike-timing-dependent plasticity (STDP) learning rules. For the present device, the space-charge-limited current (SCLC) and trap-controlled-SCLC effects dominated during positive and negative bias I-V characteristics, respectively. The RS mechanism dominated in the low resistance state (LRS), and the high resistance state (HRS) was explained based on the formation and rupture of conductive filament composed of Ag ions and oxygen vacancies. This work demonstrates the RS in the metal tungstate-based memristive devices and demonstrates a low-cost approach for fabricating memristive devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...