Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 11: 1287528, 2023.
Article in English | MEDLINE | ID: mdl-38025056

ABSTRACT

High-refractive index plastics are useful materials due to their optical properties, ease of processing, and low-costs compared to their inorganic counterparts. Catalytic carbon disulfide (CS2) copolymerization with epoxides is one method for producing low-cost high refractive index polymers. The reaction is accompanied by an oxygen-sulfur exchange reaction which produces irregular microstructures in the repeating units. In this study, metal salen catalysts were investigated with different metal centers (Al, Cr, Co) and salen ligand electronics, sterics, backbones, and co-catalyst in the copolymerization of CS2 with propylene oxide (PO) and cyclohexene oxide (CHO). The results reveal the essential nature of Cr metal centers on reactivity and the backbone geometry on monomer selectivity. There were no significant impacts on the O-S exchange reaction when ligand design changed, however PO and CHO/CS2 copolymers yield different monothiocarbonate microstructures. Additionally, the effects of microstructure on optical and thermal properties were investigated using spectroscopic ellipsometry and calorimetry, respectively. The CHO system produced high T g plastics (93°C) with high refractive indexes (n up to 1.64), modest absorbance (κ < 0.020), and Abbe numbers of 32.2 while PO yielded low T g adhesives (T g = 9°C) with high refractive indexes (n up to 1.73), low absorbance (κ < 0.005), and low Abbe numbers (V D = 19.1).

2.
ACS Appl Mater Interfaces ; 15(38): 45229-45238, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37699412

ABSTRACT

Hollow melanosomes found in iridescent bird feathers, including violet-backed starlings and wild turkeys, enable the generation of diverse structural colors. It has been postulated that the high refractive index (RI) contrast between melanin (1.74) and air (1.0) results in brighter and more saturated colors. This has led to several studies that have synthesized hollow synthetic melanin nanoparticles and fabricated colloidal nanostructures to produce synthetic structural colors. However, these studies use hollow nanoparticles with thin shells (<20 nm), even though shell thicknesses as high as 100 nm have been observed in natural melanosomes. Here, we combine experimental and computational approaches to examine the influence of the varying polydopamine (PDA, synthetic melanin) shell thickness (0-100 nm) and core material on structural colors. Experimentally, a concomitant change in overall particle size and RI contrast makes it difficult to interpret the effect of a hollow or solid core on color. Thus, we utilize finite-difference time-domain (FDTD) simulations to uncover the effect of shell thickness and core on structural colors. Our FDTD results highlight that hollow particles with thin shells have substantially higher saturation than same-sized solid and core-shell particles. These results would benefit a wide range of applications including paints, coatings, and cosmetics.

3.
Sci Adv ; 9(21): eadf2859, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37235651

ABSTRACT

Inspired by structural colors in avian species, various synthetic strategies have been developed to produce noniridescent, saturated colors using nanoparticle assemblies. Nanoparticle mixtures varying in particle chemistry and size have additional emergent properties that affect the color produced. For complex multicomponent systems, understanding the assembled structure and a robust optical modeling tool can empower scientists to identify structure-color relationships and fabricate designer materials with tailored color. Here, we demonstrate how we can reconstruct the assembled structure from small-angle scattering measurements using the computational reverse-engineering analysis for scattering experiments method and use the reconstructed structure in finite-difference time-domain calculations to predict color. We successfully, quantitatively predict experimentally observed color in mixtures containing strongly absorbing nanoparticles and demonstrate the influence of a single layer of segregated nanoparticles on color produced. The versatile computational approach that we present is useful for engineering synthetic materials with desired colors without laborious trial-and-error experiments.

4.
J R Soc Interface ; 20(200): 20220920, 2023 03.
Article in English | MEDLINE | ID: mdl-36854381

ABSTRACT

Until recently, and when compared with diurnal birds that use contrasting plumage patches and complex feather structures to convey visual information, communication in nocturnal and crepuscular species was considered to follow acoustic and chemical channels. However, many birds that are active in low-light environments have evolved intensely white plumage patches within otherwise inconspicuous plumages. We used spectrophotometry, electron microscopy, and optical modelling to explain the mechanisms producing bright white tail feather tips of the Eurasian woodcock Scolopax rusticola. Their diffuse reflectance was approximately 30% higher than any previously measured feather. This intense reflectance is the result of incoherent light scattering from a disordered nanostructure composed of keratin and air within the barb rami. In addition, the flattening, thickening and arrangement of those barbs create a Venetian-blind-like macrostructure that enhances the surface area for light reflection. We suggest that the woodcocks have evolved these bright white feather patches for long-range visual communication in dimly lit environments.


Subject(s)
Asteraceae , Charadriiformes , Animals , Birds , Feathers , Cytoskeleton
5.
ACS Cent Sci ; 8(7): 996-1007, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35912348

ABSTRACT

We present a new open-source, machine learning (ML) enhanced computational method for experimentalists to quickly analyze high-throughput small-angle scattering results from multicomponent nanoparticle mixtures and solutions at varying compositions and concentrations to obtain reconstructed 3D structures of the sample. This new method is an improvement over our original computational reverse-engineering analysis for scattering experiments (CREASE) method (ACS Materials Au2021, 1 (2 (2), ), 140-156), which takes as input the experimental scattering profiles and outputs a 3D visualization and structural characterization (e.g., real space pair-correlation functions, domain sizes, and extent of mixing in binary nanoparticle mixtures) of the nanoparticle mixtures. The new gene-based CREASE method reduces the computational running time by >95% as compared to the original CREASE and performs better in scenarios where the original CREASE method performed poorly. Furthermore, the ML model linking features of nanoparticle solutions (e.g., concentration, nanoparticles' tendency to aggregate) to a computed scattering profile is generic enough to analyze scattering profiles for nanoparticle solutions at conditions (nanoparticle chemistry and size) beyond those that were used for the ML training. Finally, we demonstrate application of this new gene-based CREASE method for analysis of small-angle X-ray scattering results from a nanoparticle solution with unknown nanoparticle aggregation and small-angle neutron scattering results from a binary nanoparticle assembly with unknown mixing/segregation among the nanoparticles.

6.
J R Soc Interface ; 18(181): 20210252, 2021 08.
Article in English | MEDLINE | ID: mdl-34343456

ABSTRACT

The diverse colours of bird feathers are produced by both pigments and nanostructures, and can have substantial thermal consequences. This is because reflectance, transmittance and absorption of differently coloured tissues affect the heat loads acquired from solar radiation. Using reflectance measurements and heating experiments on sunbird museum specimens, we tested the hypothesis that colour and their colour producing mechanisms affect feather surface heating and the heat transferred to skin level. As predicted, we found that surface temperatures were strongly correlated with plumage reflectivity when exposed to a radiative heat source and, likewise, temperatures reached at skin level decreased with increasing reflectivity. Indeed, nanostructured melanin-based iridescent feathers (green, purple, blue) reflected less light and heated more than unstructured melanin-based colours (grey, brown, black), as well as olives, carotenoid-based colours (yellow, orange, red) and non-pigmented whites. We used optical and heat modelling to test if differences in nanostructuring of melanin, or the bulk melanin content itself, better explains the differences between melanin-based feathers. These models showed that the greater melanin content and, to a lesser extent, the shape of the melanosomes explain the greater photothermal absorption in iridescent feathers. Our results suggest that iridescence can increase heat loads, and potentially alter birds' thermal balance.


Subject(s)
Feathers , Passeriformes , Animals , Color , Iridescence , Pigmentation
7.
ACS Appl Mater Interfaces ; 12(17): 19882-19889, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32227984

ABSTRACT

Use of colloidal suspensions to generate structural colors has the potential to reduce the use of toxic metals or organic pigments in inkjet printing, coatings, cosmetics, and other applications, and is a promising avenue to create large-scale nanostructures that produce long-lasting colors. However, expanded use of structural colors requires a reduction in coffee-ring effects during printing, which currently requires intricately patterned substrates or high particle concentrations, and diversification of colors to compete with conventional printing inks. Here, we treat substrate surfaces with cold plasma to facilitate spontaneous assembly of particles into colloidal nanostructures, reducing the need for highly concentrated particle suspensions. Moreover, by employing binary mixtures, we can tune the lightness of the hue produced or change the hue itself, allowing us to cover wider regions of color space. We demonstrate the use of this cold-plasma approach on a variety of substrates, favoring substrate diversity on which printing can be performed. This methodology enables creation of high-resolution, complex designs and opens a path for extending the limits of anticounterfeiting applications by using binary mixtures.

8.
ACS Appl Mater Interfaces ; 11(23): 21159-21165, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31094502

ABSTRACT

Nanostructured materials producing structural colors have great potential in replacing toxic metals or organic pigments. Electrophoretic deposition (EPD) is a promising method for producing these materials on a large scale, but it requires improvements in brightness, saturation, and mechanical stability. Herein, we use EPD assembly to codeposit silica (SiO2) particles with precursors of synthetic melanin, polydopamine (PDA), to produce mechanically robust, wide-angle structurally colored coatings. We use spectrophotometry to show that PDA precursors enhance the saturation of structural colors and nanoscratch testing to demonstrate that they stabilize particles within the EPD coatings. Stabilization by PDA precursors allows us to coat flexible substrates that can sustain bending stresses, opening an avenue for electroprinting on flexible materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...