Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Faraday Discuss ; 250(0): 110-128, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-37987255

ABSTRACT

One of the possible solutions to circumvent the sluggish kinetics, low capacity, and poor integrity of inorganic cathodes commonly used in rechargeable aluminium batteries (RABs) is the use of redox-active polymers as cathodes. They are not only sustainable materials characterised by their structure tunability, but also exhibit a unique ion coordination redox mechanism that makes them versatile ion hosts suitable for voluminous aluminium cation complexes, as demonstrated by the poly(quinoyl) family. Recently, phenazine-based compounds have been found to have high capacity, reversibility and fast redox kinetics in aqueous electrolytes because of the presence of a CN double bond. Here, we present one of the first examples of a phenazine-based hybrid microporous polymer, referred to as IEP-27-SR, utilized as an organic cathode in an aluminium battery with an AlCl3/EMIMCl ionic liquid electrolyte. The preliminary redox and charge storage mechanism of IEP-27-SR was confirmed by ex situ ATR-IR and EDS analyses. The introduction of phenazine active units in a robust microporous framework resulted in a remarkable rate capability (specific capacity of 116 mA h g-1 at 0.5C with 77% capacity retention at 10C) and notable cycling stability, maintaining 75% of its initial capacity after 3440 charge-discharge cycles at 1C (127 days of continuous cycling). This superior performance compared to reported Al//n-type organic cathode RABs is attributed to the stable 3D porous microstructure and the presence of micro/mesoporosity in IEP-27-SR, which facilitates electrolyte permeability and improves kinetics.

2.
ACS Appl Energy Mater ; 6(13): 7250-7257, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37448980

ABSTRACT

Ca- and Mg-based batteries represent a more sustainable alternative to Li-ion batteries. However, multivalent cation technologies suffer from poor cation mass transport. In addition, the development of positive electrodes enabling reversible charge storage currently represents one of the major challenges. Organic positive electrodes, in addition to being the most sustainable and potentially low-cost candidates, compared with their inorganic counterparts, currently present the best electrochemical performances in Ca and Mg cells. Unfortunately, organic positive electrodes suffer from relatively low capacity retention upon cycling, the origin of which is not yet fully understood. Here, 1,4,5,8-naphthalenetetracarboxylic dianhydride-derived polyimide was tested in Li, Na, Mg, and Ca cells for the sake of comparison in terms of redox potential, gravimetric capacities, capacity retention, and rate capability. The redox mechanisms were also investigated by means of operando IR experiments, and a parameter affecting most figures of merit has been identified: the presence of contact ion-pairs in the electrolyte.

3.
Small ; 18(16): e2106403, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35274455

ABSTRACT

Energy-storage materials can be assembled directly on the electrodes of a battery using electrochemical methods, this allowing sequential deposition, high structural control, and low cost. Here, a two-step approach combining electrophoretic deposition (EPD) and cathodic electrodeposition (CED) is demonstrated to fabricate multilayer hierarchical electrodes of reduced graphene oxide (rGO) and mixed transition metal sulfides (NiCoMnSx ). The process is performed directly on conductive electrodes applying a small electric bias to electro-deposit rGO and NiCoMnSx in alternated cycles, yielding an ideal porous network and a continuous path for transport of ions and electrons. A fully rechargeable alkaline battery (RAB) assembled with such electrodes gives maximum energy density of 97.2 Wh kg-1 and maximum power density of 3.1 kW kg-1 , calculated on the total mass of active materials, and outstanding cycling stability (retention 72% after 7000 charge/discharge cycles at 10 A g-1 ). When the total electrode mass of the cell is considered, the authors achieve an unprecedented gravimetric energy density of 68.5 Wh kg-1 , sevenfold higher than that of typical commercial supercapacitors, higher than that of Ni/Cd or lead-acid Batteries and similar to Ni-MH Batteries. The approach can be used to assemble multilayer composite structures on arbitrary electrode shapes.

4.
Polymers (Basel) ; 13(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063919

ABSTRACT

Aqueous zinc-polymer batteries (AZPBs) comprising abundant Zn metal anode and redox-active polymer (RAP) cathodes can be a promising solution for accomplishing viable, safe and sustainable energy storage systems. Though a limited number of RAPs have been successfully applied as organic cathodes in AZPBs, their macromolecular engineering towards improving electrochemical performance is rarely considered. In this study, we systematically compare performance of AZPB comprising Zn metal anode and either poly(catechol) homopolymer (named P(4VC)) or poly(catechol) copolymer (named P(4VC86-stat-SS14)) as polymer cathodes. Sulfonate anionic pendants in copolymer not only rendered lower activation energy and higher rate constant, but also conferred lower charge-transfer resistance, as well as facilitated Zn2+ mobility and less diffusion-controlled current responses compared to its homopolymer analogue. Consequently, the Zn||P(4VC86-stat-SS14) full-cell exhibits enhanced gravimetric (180 versus 120 mAh g-1 at 30 mg cm-2) and areal capacity (5.4 versus 3.6 mAh cm-2 at 30 mg cm-2) values, as well as superior rate capability both at room temperature (149 versus 105 mAh g-1 at 150 C) and at -35 °C (101 versus 35 mAh g-1 at 30 C) compared to Zn||P(4VC)100. This overall improved performance for Zn||P(4VC86-stat-SS14) is highly encouraging from the perspective applying macromolecular engineering strategies and paves the way for the design of advanced high-performance metal-organic batteries.

5.
Adv Mater ; 29(40)2017 Oct.
Article in English | MEDLINE | ID: mdl-28869678

ABSTRACT

Redox-active catechols are bioinspired precursors for ortho-quinones that are characterized by higher discharge potentials than para-quinones, the latter being extensively used as organic cathode materials for lithium ion batteries (LIBs). Here, this study demonstrates that the rational molecular design of copolymers bearing catechol- and Li+ ion-conducting anionic pendants endow redox-active polymers (RAPs) with ultrarobust electrochemical energy storage features when combined to carbon nanotubes as a flexible, binder-, and metal current collector-free buckypaper electrode. The importance of the structure and functionality of the RAPs on the battery performances in LIBs is discussed. The structure-optimized RAPs can store high-capacities of 360 mA h g-1 at 5C and 320 mA h g-1 at 30C in LIBs. The high ion and electron mobilities within the buckypaper also enable to register 96 mA h g-1 (24% capacity retention) at an extreme C-rate of 600C (6 s for total discharge). Moreover, excellent cyclability is noted with a capacity retention of 98% over 3400 cycles at 30C. The high capacity, superior active-material utilization, ultralong cyclability, and excellent rate performances of RAPs-based electrode clearly rival most of the state-of-the-art Li+ ion organic cathodes, and opens up new horizons for large-scalable fabrication of electrode materials for ultrarobust Li storage.

6.
J Phys Chem B ; 117(50): 16292-302, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24304178

ABSTRACT

Thermoresponsive poly(2-(2-methoxyethoxy)ethyl methacrylate) (PMEO2MA) based hybrid nanocomposite hydrogels (NCH) were synthesized by dispersing preformed cadmium sulfide (CdS) quantum dots (QDs) in the reaction mixture followed by polymerization via reversible addition-fragmentation chain transfer (RAFT) technique. High doping capacity and negligible QDs leakage were observed for hydrophilic QDs doped hydrogels (hpl-NCH) due to H-bonding interactions between QDs and pendant groups of hydrogel network. The hpl-NCH networks showed improved structural/orientational order and swelling ratios with increasing doping concentration compared to the organic hydrogel (OH). Opposite trends were observed for bulk-CdS (NCH-bulk) and 1-dodecanethiol capped CdS (NCH-DDT) doped hydrogels. Swelling induced linear retardance and quenching of photoluminescence (PL) intensity for hydrogels were exploited to study the deswelling kinetics respectively by Mueller matrix polarimetry and solid state fluorimetry, which were further corroborated with gravimetric analysis. For all the NCH, deswelling process significantly decreased with increasing temperature, which followed the order: 30 > 45 > 60 °C. Slower deswelling was observed for NCH-bulk and hpl-NCH compared to the OH, and also with increase in doping concentration due to the formation of skin layer. However, NCH-DDT exhibited accelerated deswelling process and the order was reversed with respect to doping concentration due to DDT mediated enhanced hydrophobic aggregation and water leakage channels created by long hydrophobic free-mobile nature of QDs surface tethered DDT molecules. The presented methodology provides tunable deswelling of PMEO2MA based hydrogels by doping with hydrophilically/hydrophobically modified CdS QDs.


Subject(s)
Cadmium Compounds/chemistry , Hydrogels , Methacrylates/chemistry , Quantum Dots , Selenium Compounds/chemistry , Kinetics , Microscopy, Electron, Scanning
7.
J Phys Chem B ; 116(47): 13913-21, 2012 Nov 29.
Article in English | MEDLINE | ID: mdl-23131002

ABSTRACT

Thermodynamically favored polymer-water interactions below the lower critical solution temperature (LCST) caused swelling-induced optical anisotropy (linear retardance) of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate). This was exploited to study the macroscopic deswelling kinetics quantitatively by a generalized polarimetry analysis method, based on measurement of the Mueller matrix and its subsequent inverse analysis via the polar decomposition approach. The derived medium polarization parameters, namely, linear retardance (δ), diattenuation (d), and depolarization coefficient (Δ), of the hydrogels showed interesting differences between the gels prepared by conventional free radical polymerization (FRP) and reversible addition-fragmentation chain transfer polymerization (RAFT) and also between dry and swollen state. The effect of temperature, cross-linking density, and polymerization technique employed to synthesize hydrogel on deswelling kinetics was systematically studied via conventional gravimetry and corroborated further with the corresponding Mueller matrix derived quantitative polarimetry characteristics (δ, d, and Δ). The RAFT gels exhibited higher swelling ratio and swelling-induced optical anisotropy compared to FRP gels and also deswelled faster at 30 °C. On the contrary, at 45 °C, deswelling was significantly retarded for the RAFT gels due to formation of a skin layer, which was confirmed and quantified via the enhanced diattenuation and depolarization parameters.


Subject(s)
Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Methacrylates/chemistry , Optical Phenomena , Polymers/chemistry , Temperature , Anisotropy , Kinetics , Methacrylates/chemical synthesis , Polymers/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...