Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Sci ; 39(8): 1413-1423, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37280486

ABSTRACT

The study reports the synthesis of chemosensor (E)-2-(1-(3-aminophenyl)ethylideneamino)benzenethiol (C1), a highly sensitive, colorimetric metal probe that shows distinct selectivity for the detection of Cu2+ ion in various real water samples. Upon complexation with Cu2+ in CH3OH/H2O (60:40 v/v) (aqueous methanol), the C1 demonstrate significant enhancement in the absorption at 250 nm and 300 nm with a color change from light yellow to brown which was visualized using naked-eye. Therefore, these properties make C1 as an effective candidate for on-site Cu2+ ions detection. The emission spectrum of C1 illustrated "TURN-ON" recognition of Cu2+ with a limit of detection (LOD) of 46 nM. Furthermore, Density Functional Theory (DFT) calculations were performed to better understand the interactions between C1 and Cu2+. The obtained results suggested that the electron clouds present around the -NH2 in nitrogen and sulfur in -SH play a pivotal role in the formation of a stable complex. The computational results were in good agreement with the experimental UV-visible spectrometry results.

2.
J Fluoresc ; 33(3): 1089-1099, 2023 May.
Article in English | MEDLINE | ID: mdl-36574186

ABSTRACT

In the current research work "4-{[1-(2,5-dihydroxyphenyl)ethylidene]amino}-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one" chemosensor (C1) synthesized by condensation reaction using "4-amino-1,2-dihydro-1,5-dimethyl-2-phenylpyrazol-3-one" and "2,5-dihydroxy actophenone" was used as the effective sensor of metal ion. The C1 shows absorption peak at 326 nm due to the C = C bond (π-π* transition), while the absorption peak at 364 nm is caused by the C = O bond (n-π* transition). In the presence of copper, C1 only demonstrated a redshift in absorption peak from 364 to 425 nm. Even in the presence of other competing metal ions, the hypsochromic shift of the absorption band and the quenching of the fluorescence emission intensity were different for detecting Cu2+, in CH3OH-H2O (v/v = 6:4). The capacity of the C1 to bind with Cu2+ was further proved using DFT simulations. The complex C1 + Cu2+ has a HOMO-LUMO energy gap of 2.8002 eV, which is lesser than C1 (2.9991 eV) showing improvement in the stability of the C1 + Cu2+ complex. Using the Benesi-Hildebrand and Scatchard plots, calculated Kb values were to be 47,340 and 48369 M-1 respectively, showing the creation of stable complexation between Cu2+ and C1 with 1:1 stoichiometry. The limit of detection (LOD) for Cu2+ ion was 649 nM. Strip sheets were also built and tested to detect varying amounts of Cu2+ in aqueous solution, and their color change suggested that they might be used for on-site Cu2+ detection in polluted water.

3.
J Fluoresc ; 30(6): 1295-1330, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32930926

ABSTRACT

Colorimetric and ratiometric fluorescent probe for cations gain very well attention by the chemist, biologist and environmentalist. Metals has two sides, first is biolgical active for living creature and toxic nature for the ecosystem. From last three decades the scientists are contiously trying to find out the best solution for the detection of cations at micro as well as nanomolar levels. In the present review we discussed the colorimetric and ratiometric fluorescent probe synthesized by the authors in almost half decade.


Subject(s)
Cations/chemistry , Chemistry Techniques, Analytical/instrumentation , Organic Chemicals/chemistry , Fluorescent Dyes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...