Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 18(4): 2504-2512, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29442920

ABSTRACT

Disorder in a mixed phase, sp2-sp3 bonded graphene-like nanocarbon (GNC) lattice has been extensively studied for its electronic and field emission properties. Morphological investigations are performed using scanning electron microscopy (SEM) which depicts microstructures comprising of atomically flat terraces (c-planes) with an abundance of edges (ab planes which are orthogonal to c-planes). Scanning tunneling microscopy (STM) is used to observe the atomic structure of basal planes whereas field emission microscopy (FEM) is found to be suitable for resolving nanotopography of edges. STM images revealed the hexagonal and non-hexagonal atomic arrangements in addition to a variety of defect structures. Scanning tunneling spectroscopy is carried out to study the effect of this short-range disorder on the local density of states. Current versus voltage (I-V) characteristics have been recorded at different defect sites and are compared with respect to the extent of the defect. As sharp edges of GNC are expected to be excellent field emitters, because of low work function and high electric field, enhancement in current is observed particularly when applied electric field is along basal planes. Therefore, it is worthwhile to investigate field emission from these samples. The FEM images show a cluster of bright spots at low voltages which later transformed into an array resembling ledges of ab-planes with increasing voltage. Reproducible I-V curves yield linear Fowler-Nordheim plots supporting field emission as the dominant mechanism of electron emission. Turn on field for 10 µA current is estimated to be ~3 V/µm.

2.
J Nanosci Nanotechnol ; 18(3): 1626-1635, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29448639

ABSTRACT

Scanning tunneling spectroscopy (STS) is used for investigating variations in electronic properties of gold nanoparticles (AuNPs) and its composite with urethane-methacrylate comb polymer (UMCP) as function of temperature. Films are prepared by drop casting AuNPs and UMCP in desired manner on silicon substrates. Samples are further analyzed for morphology under scanning electron microscopy (SEM) and atomic force microscopy (AFM). STS measurements performed in temperature range of 33 °C to 142 °C show systematic variation in current versus voltage (I-V) curves, exhibiting semiconducting to metallic transition/Schottky behavior for different samples, depending upon preparation method and as function of temperature. During current versus time (I-t) measurement for AuNPs, random telegraphic noise is observed at room temperature. Random switching of tunneling current between two discrete levels is observed for this sample. Power spectra derived from I-t show 1/f2 dependence. Statistical analysis of fluctuations shows exponential behavior with time width τ ≈ 7 ms. Local density of states (LDOS) plots derived from I-V curves of each sample show systematic shift in valance/conduction band edge towards/away from Fermi level, with respect to increase in temperature. Schottky emission is best fitted electron emission mechanism for all samples over certain range of bias voltage. Schottky plots are used to calculate barrier heights and temperature dependent measurements helped in measuring activation energies for electron transport in all samples.

3.
Nanoscale ; 5(10): 4404-11, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23575605

ABSTRACT

We propose enhanced charge storage capacity of nanoparticles based polymer films. A flat band voltage window varying from 5-7 V is obtained leading to a trapped charge density of the order of 10(13) cm(-2). These results vary for two distinct morphologies obtained due to decoration of a urethane-methacrylate comb polymer (UMCP) network by gold nanoparticles (AuNPs). Films have been further investigated for morphology, optical, charge storage, and electron transport properties using techniques like scanning electron microscopy (SEM), atomic force microscopy (AFM), absorption spectroscopy (UV-Vis), scanning tunneling microscopy/spectroscopy (STM/STS) and capacitance versus voltage (C-V) measurements. SEM and AFM confirm either the deposition of AuNPs inside the UMCP network or the formation of ring like structures depending on the deposition sequence. STS measurements performed on both films are compared with bare UMCP and AuNPs films. Current versus voltage (I-V) characteristics so obtained are discussed in the light of electron transport mechanisms in such materials.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Polymethacrylic Acids/chemistry , Polyurethanes/chemistry , Electron Transport , Metal Nanoparticles/ultrastructure , Microscopy, Atomic Force/methods , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Scanning Transmission/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...