Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 1044662, 2022.
Article in English | MEDLINE | ID: mdl-36439136

ABSTRACT

Immunocompromised populations are highly vulnerable to developing life-threatening infections. Strategies to protect patients with weak immune responses are urgently needed. Employing trained immunity, whereby innate leukocytes undergo reprogramming upon exposure to a microbial product and respond more robustly to subsequent infection, is a promising approach. Previously, we demonstrated that the TLR4 agonist monophosphoryl lipid A (MPLA) induces trained immunity and confers broad resistance to infection. TLR4 signals through both MyD88- and TRIF-dependent cascades, but the relative contribution of each pathway to induction of trained immunity is unknown. Here, we show that MPLA-induced resistance to Staphylococcus aureus infection is lost in MyD88-KO, but not TRIF-KO, mice. The MyD88-activating agonist CpG (TLR9 agonist), but not TRIF-activating Poly I:C (TLR3 agonist), protects against infection in a macrophage-dependent manner. MPLA- and CpG-induced augmentation of macrophage metabolism and antimicrobial functions is blunted in MyD88-, but not TRIF-KO, macrophages. Augmentation of antimicrobial functions occurs in parallel to metabolic reprogramming and is dependent, in part, on mTOR activation. Splenic macrophages from CpG-treated mice confirmed that TLR/MyD88-induced reprogramming occurs in vivo. TLR/MyD88-triggered metabolic and functional reprogramming was reproduced in human monocyte-derived macrophages. These data show that MyD88-dependent signaling is critical in TLR-mediated trained immunity.


Subject(s)
Myeloid Differentiation Factor 88 , Toll-Like Receptor 4 , Humans , Mice , Animals , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Toll-Like Receptors/metabolism , Macrophages , Adaptor Proteins, Signal Transducing/metabolism
2.
J Immunol ; 207(11): 2785-2798, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34740960

ABSTRACT

Bacterial infections are a common and deadly threat to vulnerable patients. Alternative strategies to fight infection are needed. ß-Glucan, an immunomodulator derived from the fungal cell wall, provokes resistance to infection by inducing trained immunity, a phenomenon that persists for weeks to months. Given the durability of trained immunity, it is unclear which leukocyte populations sustain this effect. Macrophages have a life span that surpasses the duration of trained immunity. Thus, we sought to define the contribution of differentiated macrophages to trained immunity. Our results show that ß-glucan protects mice from Pseudomonas aeruginosa infection by augmenting recruitment of innate leukocytes to the site of infection and facilitating local clearance of bacteria, an effect that persists for more than 7 d. Adoptive transfer of macrophages, trained using ß-glucan, into naive mice conferred a comparable level of protection. Trained mouse bone marrow-derived macrophages assumed an antimicrobial phenotype characterized by enhanced phagocytosis and reactive oxygen species production in parallel with sustained enhancements in glycolytic and oxidative metabolism, increased mitochondrial mass, and membrane potential. ß-Glucan induced broad transcriptomic changes in macrophages consistent with early activation of the inflammatory response, followed by sustained alterations in transcripts associated with metabolism, cellular differentiation, and antimicrobial function. Trained macrophages constitutively secreted CCL chemokines and robustly produced proinflammatory cytokines and chemokines in response to LPS challenge. Induction of the trained phenotype was independent of the classic ß-glucan receptors Dectin-1 and TLR-2. These findings provide evidence that ß-glucan induces enhanced protection from infection by driving trained immunity in macrophages.


Subject(s)
Immunologic Memory/drug effects , Macrophages/drug effects , Protective Agents/pharmacology , beta-Glucans/pharmacology , Animals , Cell Differentiation/drug effects , Cell Differentiation/immunology , Female , Immunity, Innate/drug effects , Immunity, Innate/immunology , Immunologic Memory/immunology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
3.
Front Immunol ; 11: 1043, 2020.
Article in English | MEDLINE | ID: mdl-32547553

ABSTRACT

Critically ill, severely injured and high-risk surgical patients are vulnerable to secondary infections during hospitalization and after hospital discharge. Studies show that the mitochondrial function and oxidative metabolism of monocytes and macrophages are impaired during sepsis. Alternatively, treatment with microbe-derived ligands, such as monophosphoryl lipid A (MPLA), peptidoglycan, or ß-glucan, that interact with toll-like receptors and other pattern recognition receptors on leukocytes induces a state of innate immune memory that confers broad-spectrum resistance to infection with common hospital-acquired pathogens. Priming of macrophages with MPLA, CPG oligodeoxynucleotides (CpG ODN), or ß-glucan induces a macrophage metabolic phenotype characterized by mitochondrial biogenesis and increased oxidative metabolism in parallel with increased glycolysis, cell size and granularity, augmented phagocytosis, heightened respiratory burst functions, and more effective killing of microbes. The mitochondrion is a bioenergetic organelle that not only contributes to energy supply, biosynthesis, and cellular redox functions but serves as a platform for regulating innate immunological functions such as production of reactive oxygen species (ROS) and regulatory intermediates. This review will define current knowledge of leukocyte metabolic dysfunction during and after sepsis and trauma. We will further discuss therapeutic strategies that target leukocyte mitochondrial function and might have value in preventing or reversing sepsis- and trauma-induced immune dysfunction.


Subject(s)
Infections/immunology , Leukocytes/metabolism , Mitochondria/metabolism , Sepsis/immunology , Wounds and Injuries/immunology , Animals , Cellular Reprogramming , Humans , Immunity, Innate , Leukocytes/immunology , Oxidative Stress
4.
Front Immunol ; 11: 624272, 2020.
Article in English | MEDLINE | ID: mdl-33613563

ABSTRACT

Sepsis is a leading cause of death in intensive care units and survivors develop prolonged immunosuppression and a high incidence of recurrent infections. No definitive therapy exists to treat sepsis and physicians rely on supportive care including antibiotics, intravenous fluids, and vasopressors. With the rising incidence of antibiotic resistant microbes, it is becoming increasingly critical to discover novel therapeutics. Sepsis-induced leukocyte dysfunction and immunosuppression is recognized as an important contributor towards increased morbidity and mortality. Pre-clinical and clinical studies show that specific cell surface inhibitory immune checkpoint receptors and ligands including PD-1, PD-L1, CTLA4, BTLA, TIM3, OX40, and 2B4 play important roles in the pathophysiology of sepsis by mediating a fine balance between host immune competency and immunosuppression. Pre-clinical studies targeting the inhibitory effects of these immune checkpoints have demonstrated reversal of leukocyte dysfunction and improved host resistance of infection. Measurement of immune checkpoint expression on peripheral blood leukocytes may serve as a means of stratifying patients to direct individualized therapy. This review focuses on advances in our understanding of the role of immune checkpoints in the host response to infections, and the potential clinical application of therapeutics targeting the inhibitory immune checkpoint pathways for the management of septic patients.


Subject(s)
Gene Expression Regulation/immunology , Immune Checkpoint Proteins/immunology , Immune Tolerance , Leukocytes/immunology , Sepsis/immunology , Humans , Leukocytes/pathology , Sepsis/pathology , Sepsis/therapy
5.
J Leukoc Biol ; 106(1): 105-117, 2019 07.
Article in English | MEDLINE | ID: mdl-30791134

ABSTRACT

Cellular metabolism is a means of generating ATP to provide energy for key cellular functions. However, recent research shows that citric acid cycle intermediates target vital cellular functions of the innate immune system. Succinate, itaconate, citrate, and fumarate have been shown to mediate or regulate important myeloid cell functions during infection and inflammation. This review covers the regulatory functions of citric acid cycle intermediates in myeloid cells and discusses potential translational applications, key mechanistic questions, and future research directions.


Subject(s)
Citric Acid Cycle/physiology , Leukocytes/physiology , Animals , Citric Acid/pharmacology , Fumarates/pharmacology , Humans , Reactive Oxygen Species/metabolism , Succinates/pharmacology , Succinic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...