Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Safety Res ; 75: 241-250, 2020 12.
Article in English | MEDLINE | ID: mdl-33334483

ABSTRACT

INTRODUCTION: Evidence from the global construction industry suggests that an unacceptable number of safety hazards remain unrecognized in construction workplaces. Unfortunately, there isn't a sufficient understanding of why particular safety hazards remain unrecognized. Such an understanding is important to address the issue of poor hazard recognition and develop remedial interventions. A recent exploratory effort provided anecdotal evidence that workers often fail to recognize safety hazards that are expected to impose relatively lower levels of safety risk. In other words, the research demonstrated that the underlying risk imposed by a safety hazard can affect whether a hazard will be recognized or not. METHOD: The presented research focused on empirically testing this preliminary finding. More specifically, the study tested the proposition that Construction workers are more likely to recognize safety hazards that impose higher levels of safety risk than those that impose relatively lower levels of safety risk. The research goals were accomplished through a number of steps. First, a set of 16 construction case images depicting a variety of construction operations that included a number of known safety hazards was presented to a panel of four construction safety experts. The experts were tasked with examining each of the known safety hazards and providing a rating of the relative safety risk that the individual hazards impose. Having obtained an estimate of the underlying safety risk, a hazard recognition activity was administered to 287 workers recruited from 57 construction workplaces in the United States. The hazard recognition activity involved the examination of a random sample of two construction case images that were previously examined by the expert panel and reporting relevant safety hazards. RESULTS: The results of the study provided support for the proposition that workers are more likely to recognize hazards that impose relatively higher levels of safety risk. Practical Applications: The findings of the study can be leveraged to improve existing hazard recognition methods and develop more robust interventions to address the issue of poor hazard recognition levels.


Subject(s)
Construction Industry/statistics & numerical data , Risk-Taking , Safety/statistics & numerical data , Perception , United States
2.
Article in English | MEDLINE | ID: mdl-33114347

ABSTRACT

Construction workers fail to recognize a large number of safety hazards. These unrecognized safety hazards can lead to unintended hazard exposure and tragic safety incidents. Unfortunately, traditional hazard recognition interventions (e.g., job hazard analyses and safety training) have been unable to tackle the industry-wide problem of poor hazard recognition levels. In fact, emerging evidence has demonstrated that traditional hazard recognition interventions have been designed without a proper understanding of the challenges workers experience during hazard recognition efforts. Interventions and industry-wide efforts designed based on a more thorough understanding of these challenges can yield substantial benefits-including superior hazard recognition levels and lower injury rates. Towards achieving this goal, the current investigation focused on identifying hazard categories that workers are more proficient in recognizing and others that they are less proficient in recognizing (i.e., hazard recognition patterns). For the purpose of the current study, hazards were classified on the basis of the energy source per Haddon's energy release theory (e.g., gravity, motion, electrical, chemical, etc.). As part of the study, 287 workers representing 57 construction workplaces in the United States were engaged in a hazard recognition activity. Apart from confirming previous research findings that workers fail to recognize a disproportionate number of safety hazards, the results demonstrate that the workers are more proficient in recognizing certain hazard types. More specifically, the workers on average recognized roughly 47% of the safety hazards in the gravity, electrical, motion, and temperature hazard categories while only recognizing less than 10% of the hazards in the pressure, chemical, and radiation hazard categories. These findings can inform the development of more robust interventions and industry-wide initiatives to tackle the issue of poor hazard recognition levels in the construction industry.


Subject(s)
Construction Industry , Occupational Health , Humans , United States , Workplace
3.
Article in English | MEDLINE | ID: mdl-30597871

ABSTRACT

Safety communication among construction workers is fundamental to effective safety management. However, evidence suggests that poor safety communication is a common problem in construction workplaces. In fact, previous research has unveiled a number of systemic barriers to effective safety communication in the construction industry. When workers do not sufficiently communicate relevant safety hazards and appropriate injury prevention measures, unexpected injuries can follow. Therefore, research examining factors that promote or impede effective safety communication is necessary. Towards achieving this goal, the purpose of the current research was to evaluate the effect of safety climate and crew cohesion on the demonstrated safety communication levels. The goal was achieved by gathering empirical data from 57 construction workplaces in the United States. More specifically, the participating construction workplaces were visited, and data pertaining to the safety climate and crew-level cohesion were first collected using questionnaire surveys. Next, a safety communication survey instrument was administered, and the data necessary to compute network density-a social network metric that is indicative of safety communication levels was gathered. The analysis of the data suggested that a positive relationship exists between safety climate and safety communication levels. Likewise, construction crews that demonstrated higher levels of cohesion exhibited superior safety communication levels. Finally, evidence also suggested that a synergetic effect exists between safety climate and crew cohesion in improving safety communication levels.


Subject(s)
Communication , Construction Industry , Occupational Health/standards , Organizational Culture , Safety Management/standards , Work Engagement , Humans , Safety Management/statistics & numerical data , Surveys and Questionnaires , United States , Workplace/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...