Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 227(2)2024 01 15.
Article in English | MEDLINE | ID: mdl-38099471

ABSTRACT

Diapause exhibited by embryos of Artemia franciscana is accompanied by severe arrest of respiration. A large fraction of this depression is attributable to downregulation of trehalose catabolism that ultimately restricts fuel to mitochondria. This study now extends knowledge on the mechanism by revealing metabolic depression is heightened by inhibitions within mitochondria. Compared with that in embryo lysates during post-diapause, oxidative phosphorylation (OXPHOS) capacity P is depressed during diapause when either NADH-linked substrates (pyruvate and malate) for electron transfer (electron transfer capacity, E) through respiratory Complex I or the Complex II substrate succinate are used. When pyruvate, malate and succinate were combined, respiratory inhibition by the phosphorylation system in diapause lysates was discovered as judged by P/E flux control ratios (two-way ANOVA; F1,24=38.78; P<0.0001). Inhibition was eliminated as the diapause extract was diluted (significant interaction term; F2,24=9.866; P=0.0007), consistent with the presence of a diffusible inhibitor. One candidate is long-chain acyl-CoA esters known to inhibit the adenine nucleotide translocator. Addition of oleoyl-CoA to post-diapause lysates markedly decreased the P/E ratio to 0.40±0.07 (mean±s.d.; P=0.002) compared with 0.79±0.11 without oleoyl-CoA. Oleoyl-CoA inhibits the phosphorylation system and may be responsible for the depressed P/E in lysates from diapause embryos. With isolated mitochondria, depression of P/E by oleoyl-CoA was fully reversed by addition of l-carnitine (control versus recovery with l-carnitine, P=0.338), which facilitates oleoyl-CoA transport into the matrix and elimination by ß-oxidation. In conclusion, severe metabolic arrest during diapause promoted by restricting glycolytic carbon to mitochondria is reinforced by depression of OXPHOS capacity and the phosphorylation system.


Subject(s)
Diapause , Extremophiles , Animals , Oxidative Phosphorylation , Artemia/physiology , Malates , Pyruvates , Succinates , Carnitine
2.
Commun Chem ; 4(1): 159, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-36697678

ABSTRACT

Nanosized robots with self-propelling and navigating capabilities have become an exciting field of research, attributable to their autonomous motion and specific biomolecular interaction ability for bio-analysis and diagnosis. Here, we report magnesium (Mg)-Fe3O4-based Magneto-Fluorescent Nanorobot ("MFN") that can self-propel in blood without any other additives and can selectively and rapidly isolate cancer cells. The nanobots viz; Mg-Fe3O4-GSH-G4-Cy5-Tf and Mg-Fe3O4-GSH-G4-Cy5-Ab have been designed and synthesized by simple surface modifications and conjugation chemistry to assemble multiple components viz; (i) EpCAM antibody/transferrin, (ii) cyanine 5 NHS (Cy5) dye, (iii) fourth generation (G4) dendrimers for multiple conjugation and (iv) glutathione (GSH) by chemical conjugation onto one side of Mg nanoparticle. The nanobots propelled efficiently not only in simulated biological media, but also in blood samples. With continuous motion upon exposure to water and the presence of Fe3O4 shell on Mg nanoparticle for magnetic guidance, the nanobot offers major improvements in sensitivity, efficiency and speed by greatly enhancing capture of cancer cells. The nanobots showed excellent cancer cell capture efficiency of almost 100% both in serum and whole blood, especially with MCF7 breast cancer cells.

3.
Sci Rep ; 10(1): 4703, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32170128

ABSTRACT

Self-propelling magnetic nanorobots capable of intrinsic-navigation in biological fluids with enhanced pharmacokinetics and deeper tissue penetration implicates promising strategy in targeted cancer therapy. Here, multi-component magnetic nanobot designed by chemically conjugating magnetic Fe3O4 nanoparticles (NPs), anti-epithelial cell adhesion molecule antibody (anti-EpCAM mAb) to multi-walled carbon nanotubes (CNT) loaded with an anticancer drug, doxorubicin hydrochloride (DOX) is reported. Autonomous propulsion of the nanobots and their external magnetic guidance is enabled by enriching Fe3O4 NPs with dual catalytic-magnetic functionality. The nanobots propel at high velocities even in complex biological fluids. In addition, the nanobots preferably release DOX in the intracellular lysosomal compartment of human colorectal carcinoma (HCT116) cells by the opening of Fe3O4 NP gate. Further, nanobot reduce ex vivo HCT116 tumor spheroids more efficiently than free DOX. The multicomponent nanobot's design represents a more pronounced method in targeting tumors with self-assisted anticancer drug delivery for 'far-reaching' sites in treating cancers.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Carriers , Drug Delivery Systems , Hydrogen-Ion Concentration , Nanoparticles , Cell Line, Tumor , Doxorubicin/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems/methods , Drug Liberation , Epithelial Cell Adhesion Molecule/metabolism , Humans , Kinetics , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Permeability , Spectroscopy, Fourier Transform Infrared
4.
Nanoscale Adv ; 2(6): 2315-2325, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-36133387

ABSTRACT

Spatial arrangement for cells and the opportunity thereof have implications in cell regeneration and cell proliferation. 3D inverse space (3DIS) substrates with micron-sized pores are fabricated under controlled environmental conditions from polymers such as poly(lactic-co-glycolic) acid (PLGA), poly(lactic acid) (PLA) and poly(styrene) (PS). The characterization of 3DIS substrates by optical microscopy, scanning probe microscopy (SPM), etc. shows pores within 1-18 µm diameter and prominent surface roughness extending up to 3.9 nm in height over its base. Conversely, to compare two-dimensional (2D) versus 3DIS substrates, the crucial variables of cell height, cell spreading area and cell volume are compared using lung adenocarcinoma (A549) cells. The results indicate an average cell thickness of ∼6 µm on a glass substrate whereas cells on PLGA 3DIS were ∼12 µm in height, occasionally reaching 20 µm, with a 40% decreased cell spreading area. A549 cells cultured on polymer 3DIS substrates show a cell regeneration growth pattern, dependent on the available spatial volume. Furthermore, PLGA 3DIS cell culture systems with and without graded doxorubicin (DOX) pre-treatment result in potent cell inhibition and cell proliferation, respectively. Additionally, standard DOX administration to A549 cells in the PLGA 3DIS system revealed altered drug sensitivity. 3DIS demonstrates utility in facilitating cellular regeneration and mimicking cell proliferation in defined spatial arrangements.

5.
J Nutr Biochem ; 26(11): 1235-47, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26278039

ABSTRACT

Dietary methionine restriction (MR) produces a coordinated series of biochemical and physiological responses that improve biomarkers of metabolic health, increase energy expenditure, limit fat accretion and improve overall insulin sensitivity. Inguinal white adipose tissue (IWAT) is a primary target and site of action where the diet initiates transcriptional programs linked to enhancing both synthesis and oxidation of lipid. Using a combination of ex vivo approaches to assess dietary effects on cell morphology and function, we report that dietary MR produced a fourfold increase in multilocular, UCP1-expressing cells within this depot in conjunction with significant increases in mitochondrial content, size and cristae density. Dietary MR increased expression of multiple enzymes within the citric acid cycle, as well as respiratory complexes I, II and III. The physiological significance of these responses, evaluated in isolated mitochondria by high-resolution respirometry, was a significant increase in respiratory capacity measured using multiple substrates. The morphological, transcriptional and biochemical remodeling of IWAT mitochondria enhances the synthetic and oxidative capacity of this tissue and collectively underlies its expanded role as a significant contributor to the overall increase in metabolic flexibility and uncoupled respiration produced by the diet.


Subject(s)
Adipose Tissue, White/drug effects , Methionine/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue, White/metabolism , Animals , Cytosol/metabolism , Male , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Uncoupling Protein 1/metabolism
6.
Physiol Biochem Zool ; 86(1): 106-18, 2013.
Article in English | MEDLINE | ID: mdl-23303325

ABSTRACT

Diapause embryos were collected from ovigerous females of Artemia franciscana at the Great Salt Lake, Utah, and were synchronized to within 4 h of release. Respiration rate for these freshly released embryos across a subsequent 26-d time course showed a rapid decrease during the first several days followed thereafter by a much slower decline. The overall metabolic depression was estimated to be greater than 99%. However, proton conductance of mitochondria isolated from diapause and postdiapause embryos was identical. Because proton leak is apparently not downregulated during diapause, mitochondrial membrane potential is likely compromised because of the very low metabolic rate observed for diapause embryos. Given that trehalose is the primary fuel used by these embryos, we measured metabolic intermediates along the catabolic pathway from trehalose to acetyl-CoA for both diapause and postdiapause (active) embryos in order to identify sites of metabolic inhibition. Comparison of product-to-substrate ratios for sequential enzymatic steps revealed inhibition during diapause at trehalase, hexokinase, pyruvate kinase, and pyruvate dehydrogenase. Measurements of ATP, ADP, and AMP allowed calculations of substantial decreases in ATP:ADP ratio and in adenylate energy charge during diapause. The phosphorylation of site 1 for pyruvate dehydrogenase (PDH) subunit E1α was higher in diapause embryos than in postdiapause embryos, which is consistent with PDH inhibition during diapause. Taken together, our findings indicate that restricted substrate availability to mitochondria for oxidative phosphorylation contributes to downregulating metabolic rate during diapause.


Subject(s)
Artemia/embryology , Artemia/physiology , Animals , Artemia/enzymology , Down-Regulation , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/enzymology , Embryo, Nonmammalian/physiology , Estivation , Membrane Potential, Mitochondrial , Oxidative Phosphorylation , Trehalose/metabolism , Utah
SELECTION OF CITATIONS
SEARCH DETAIL
...