Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(25): eadj0720, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38896627

ABSTRACT

Mutations in the transcription factors encoded by PHOX2B or LBX1 correlate with congenital central hypoventilation disorders. These conditions are typically characterized by pronounced hypoventilation, central apnea, and diminished chemoreflexes, particularly to abnormally high levels of arterial PCO2. The dysfunctional neurons causing these respiratory disorders are largely unknown. Here, we show that distinct, and previously undescribed, sets of medullary neurons coexpressing both transcription factors (dB2 neurons) account for specific respiratory functions and phenotypes seen in congenital hypoventilation. By combining intersectional chemogenetics, intersectional labeling, lineage tracing, and conditional mutagenesis, we uncovered subgroups of dB2 neurons with key functions in (i) respiratory tidal volumes, (ii) the hypercarbic reflex, (iii) neonatal respiratory stability, and (iv) neonatal survival. These data provide functional evidence for the critical role of distinct medullary dB2 neurons in neonatal respiratory physiology. In summary, our work identifies distinct subgroups of dB2 neurons regulating breathing homeostasis, dysfunction of which causes respiratory phenotypes associated with congenital hypoventilation.


Subject(s)
Homeodomain Proteins , Hypoventilation , Medulla Oblongata , Neurons , Transcription Factors , Hypoventilation/congenital , Hypoventilation/genetics , Animals , Neurons/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Medulla Oblongata/metabolism , Sleep Apnea, Central/genetics , Phenotype , Humans
2.
Sci Rep ; 10(1): 13322, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32770070

ABSTRACT

Synapse and dendritic spine loss induced by amyloid-ß oligomers is one of the main hallmarks of the early phases of Alzheimer's disease (AD) and is directly correlated with the cognitive decline typical of this pathology. The p75 neurotrophin receptor (p75NTR) binds amyloid-ß oligomers in the nM range. While it was shown that µM concentrations of amyloid-ß mediate cell death, the role and intracellular signaling of p75NTR for dendritic spine pathology induced by sublethal concentrations of amyloid-ß has not been analyzed. We describe here p75NTR as a crucial binding partner in mediating effects of soluble amyloid-ß oligomers on dendritic spine density and structure in non-apoptotic hippocampal neurons. Removing or over-expressing p75NTR in neurons rescues or exacerbates the typical loss of dendritic spines and their structural alterations observed upon treatment with nM concentrations of amyloid-ß oligomers. Moreover, we show that binding of amyloid-ß oligomers to p75NTR activates the RhoA/ROCK signaling cascade resulting in the fast stabilization of the actin spinoskeleton. Our results describe a role for p75NTR and downstream signaling events triggered by binding of amyloid-ß oligomers and causing dendritic spine pathology. These observations further our understanding of the molecular mechanisms underlying one of the main early neuropathological hallmarks of AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Dendritic Spines/metabolism , Hippocampus/metabolism , Receptors, Nerve Growth Factor/metabolism , Signal Transduction , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Animals , Dendritic Spines/genetics , Dendritic Spines/pathology , Disease Models, Animal , Hippocampus/pathology , Mice , Mice, Knockout , Receptors, Nerve Growth Factor/genetics
3.
Int J Mol Sci ; 21(9)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349283

ABSTRACT

The brain-derived neurotrophic factor (BDNF) plays crucial roles in both the developing and mature brain. Moreover, alterations in BDNF levels are correlated with the cognitive impairment observed in several neurological diseases. Among the different therapeutic strategies developed to improve endogenous BDNF levels is the administration of the BDNF-inducing drug Fingolimod, an agonist of the sphingosine-1-phosphate receptor. Fingolimod treatment was shown to rescue diverse symptoms associated with several neurological conditions (i.e., Alzheimer disease, Rett syndrome). However, the cellular mechanisms through which Fingolimod mediates its BDNF-dependent therapeutic effects remain unclear. We show that Fingolimod regulates the dendritic architecture, dendritic spine density and morphology of healthy mature primary hippocampal neurons. Moreover, the application of Fingolimod upregulates the expression of activity-related proteins c-Fos and pERK1/2 in these cells. Importantly, we show that BDNF release is required for these actions of Fingolimod. As alterations in neuronal structure underlie cognitive impairment, we tested whether Fingolimod application might prevent the abnormalities in neuronal structure typical of two neurodevelopmental disorders, namely Rett syndrome and Cdk5 deficiency disorder. We found a significant rescue in the neurite architecture of developing cortical neurons from Mecp2 and Cdkl5 mutant mice. Our study provides insights into understanding the BDNF-dependent therapeutic actions of Fingolimod.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Dendritic Spines/metabolism , Fingolimod Hydrochloride/pharmacology , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Animals , Biomarkers , Fluorescent Antibody Technique , Gene Expression , Gene Expression Regulation , Genes, fos , Immunosuppressive Agents/pharmacology , Mice , Pyramidal Cells/cytology , Rett Syndrome/etiology , Rett Syndrome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...