Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Comput Neurosci ; 18: 1415967, 2024.
Article in English | MEDLINE | ID: mdl-38952709

ABSTRACT

Electroencephalogram (EEG) plays a pivotal role in the detection and analysis of epileptic seizures, which affects over 70 million people in the world. Nonetheless, the visual interpretation of EEG signals for epilepsy detection is laborious and time-consuming. To tackle this open challenge, we introduce a straightforward yet efficient hybrid deep learning approach, named ResBiLSTM, for detecting epileptic seizures using EEG signals. Firstly, a one-dimensional residual neural network (ResNet) is tailored to adeptly extract the local spatial features of EEG signals. Subsequently, the acquired features are input into a bidirectional long short-term memory (BiLSTM) layer to model temporal dependencies. These output features are further processed through two fully connected layers to achieve the final epileptic seizure detection. The performance of ResBiLSTM is assessed on the epileptic seizure datasets provided by the University of Bonn and Temple University Hospital (TUH). The ResBiLSTM model achieves epileptic seizure detection accuracy rates of 98.88-100% in binary and ternary classifications on the Bonn dataset. Experimental outcomes for seizure recognition across seven epilepsy seizure types on the TUH seizure corpus (TUSZ) dataset indicate that the ResBiLSTM model attains a classification accuracy of 95.03% and a weighted F1 score of 95.03% with 10-fold cross-validation. These findings illustrate that ResBiLSTM outperforms several recent deep learning state-of-the-art approaches.

2.
Sci Rep ; 14(1): 14210, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902285

ABSTRACT

Regular screening for cervical cancer is one of the best tools to reduce cancer incidence. Automated cell segmentation in screening is an essential task because it can present better understanding of the characteristics of cervical cells. The main challenge of cell cytoplasm segmentation is that many boundaries in cell clumps are extremely difficult to be identified. This paper proposes a new convolutional neural network based on Mask RCNN and PointRend module, to segment overlapping cervical cells. The PointRend head concatenates fine grained features and coarse features extracted from different feature maps to fine-tune the candidate boundary pixels of cell cytoplasm, which are crucial for precise cell segmentation. The proposed model achieves a 0.97 DSC (Dice Similarity Coefficient), 0.96 TPRp (Pixelwise True Positive Rate), 0.007 FPRp (Pixelwise False Positive Rate) and 0.006 FNRo (Object False Negative Rate) on dataset from ISBI2014. Specially, the proposed method outperforms state-of-the-art result by about 3 % on DSC, 1 % on TPRp and 1.4 % on FNRo respectively. The performance metrics of our model on dataset from ISBI2015 are slight better than the average value of other approaches. Those results indicate that the proposed method could be effective in cytological analysis and then help experts correctly discover cervical cell lesions.


Subject(s)
Cervix Uteri , Neural Networks, Computer , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/diagnosis , Cervix Uteri/pathology , Cervix Uteri/diagnostic imaging , Cervix Uteri/cytology , Image Processing, Computer-Assisted/methods , Algorithms , Early Detection of Cancer/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...