Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Mech ; 61(1): 285-303, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33814554

ABSTRACT

BACKGROUND: Regional mechanical characterization of pulmonary arteries can be useful in the development of computational models of pulmonary arterial mechanics. OBJECTIVE: We performed a biomechanical and microstructural characterization study of porcine pulmonary arteries, inclusive of the main, left, and right pulmonary arteries (MPA, LPA, and RPA, respectively). METHODS: The specimens were initially stored at -20°C and allowed to thaw for 12-24 hours prior to testing. Each artery was further subdivided into proximal, middle, and distal regions, leading to ten location-based experimental groups. Planar equibiaxial tensile testing was performed to evaluate the mechanical behavior of the specimens, from which we calculated the stress at the maximum strain (S 55), tensile modulus (TM), anisotropy index (AI), and strain energy in terms of area under the stress-strain curve (AUC). Histological quantification was performed to evaluate the area fraction of elastin and collagen content, intima-media thickness (IMT), and adventitial thickness (AT). The constitutive material behavior of each group was represented by a five-constant Holzapfel-Gasser-Ogden model. RESULTS: The specimens exhibited non-linear stress-strain characteristics across all groups. The MPA exhibited the highest mean wall stress and TM in the longitudinal and circumferential directions, while the bifurcation region yielded the highest values of AI and AUC. All regions revealed a higher stiffness in the longitudinal direction compared to the circumferential direction, suggesting a degree of anisotropy that is believed to be within the margin of experimental uncertainty. Collagen content was found to be the highest in the MPA and decreased significantly at the bifurcation, LPA and RPA. Elastin content did not yield such significant differences amongst the ten groups. The MPA had the highest IMT, which decreased concomitantly to the distal LPA and RPA. No significant differences were found in the AT amongst the ten groups. CONCLUSION: The mechanical properties of porcine pulmonary arteries exhibit strong regional dissimilarities, which can be used to inform future studies of high fidelity finite element models.

2.
BMC Plant Biol ; 20(1): 57, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32019504

ABSTRACT

BACKGROUND: High yielding rice varieties are usually low in grain iron (Fe) and zinc (Zn) content. These two micronutrients are involved in many enzymatic activities, lack of which cause many disorders in human body. Bio-fortification is a cheaper and easier way to improve the content of these nutrients in rice grain. RESULTS: A population panel was prepared representing all the phenotypic classes for grain Fe-Zn content from 485 germplasm lines. The panel was studied for genetic diversity, population structure and association mapping of grain Fe-Zn content in the milled rice. The population showed linkage disequilibrium showing deviation of Hardy-Weinberg's expectation for Fe-Zn content in rice. Population structure at K = 3 categorized the panel population into distinct sub-populations corroborating with their grain Fe-Zn content. STRUCTURE analysis revealed a common primary ancestor for each sub-population. Novel quantitative trait loci (QTLs) namely qFe3.3 and qFe7.3 for grain Fe and qZn2.2, qZn8.3 and qZn12.3 for Zn content were detected using association mapping. Four QTLs, namely qFe3.3, qFe7.3, qFe8.1 and qFe12.2 for grain Fe content were detected to be co-localized with qZn3.1, qZn7, qZn8.3 and qZn12.3 QTLs controlling grain Zn content, respectively. Additionally, some Fe-Zn controlling QTLs were co-localized with the yield component QTLs, qTBGW, OsSPL14 and qPN. The QTLs qFe1.1, qFe3.1, qFe5.1, qFe7.1, qFe8.1, qZn6, qZn7 and gRMm9-1 for grain Fe-Zn content reported in earlier studies were validated in this study. CONCLUSION: Novel QTLs, qFe3.3 and qFe7.3 for grain Fe and qZn2.2, qZn8.3 and qZn12.3 for Zn content were detected for these two traits. Four Fe-Zn controlling QTLs and few yield component QTLs were detected to be co-localized. The QTLs, qFe1.1, qFe3.1, qFe5.1, qFe7.1, qFe8.1, qFe3.3, qFe7.3, qZn6, qZn7, qZn2.2, qZn8.3 and qZn12.3 will be useful for biofortification of the micronutrients. Simultaneous enhancement of Fe-Zn content may be possible with yield component traits in rice.


Subject(s)
Edible Grain/physiology , Iron/metabolism , Linkage Disequilibrium , Oryza/genetics , Zinc/metabolism , Edible Grain/genetics , Genetic Variation , Nutrients/metabolism , Plant Breeding , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...