Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Pharmacol ; 56(2): 136-140, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38808925

ABSTRACT

ABSTRACT: Sildenafil, a common over-the-counter pill often self-administered at high doses for erectile dysfunction, has been reported to rarely cause prothrombotic events and sudden cardiac death in a few case reports. Therefore, we investigated the in vitro and in vivo effect of sildenafil treatment and dosage on platelet activation and mitogen-activated protein kinase (MAPK) phosphorylation. BALB/C mice were segregated into four groups, each having four mice each (control, low [3.25 mg/kg], medium [6.5 mg/kg], and high [13 mg/kg] sildenafil), and after the treatment, blood was drawn from each mouse and washed platelets prepared. Washed platelets were incubated with CD41 PE-Cy7 and Phospho-p38 MAPK PE antibodies and analyzed using a flow cytometer for platelet activation and adenosine 5'- diphosphate (ADP)/collagen-induced MAPK phosphorylation. Washed platelets obtained from the venous blood of 18 human volunteers, were incubated with PAC-1 FITC and Phospho-p38 MAPK PE antibodies, and platelet activation (ADP and collagen), followed by flow cytometry analysis. There was a significant increase in both platelet activation as well as MAPK phosphorylation in the presence of collagen in the high-dose (13 mg/kg) sildenafil group (P = 0.000774). Further, increased platelet activation was observed in samples that were treated with high-dose sildenafil as compared to the untreated samples (P < 0.00001). These studies show the risk of prothrombotic episodes in patients on high-dose sildenafil (100 mg), in those with even mild endothelial dysfunction due to ADP, and collagen-induced platelet activation through MAPK phosphorylation, which was not seen in the low-and intermediate-dose cohorts.


Subject(s)
Adenosine Diphosphate , Collagen , Mice, Inbred BALB C , Platelet Activation , Sildenafil Citrate , Animals , Sildenafil Citrate/pharmacology , Sildenafil Citrate/administration & dosage , Platelet Activation/drug effects , Male , Humans , Mice , Adenosine Diphosphate/pharmacology , Blood Platelets/drug effects , Blood Platelets/metabolism , Phosphorylation , Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , Phosphodiesterase 5 Inhibitors/administration & dosage , Phosphodiesterase 5 Inhibitors/pharmacology , Dose-Response Relationship, Drug , Adult
2.
Chemosphere ; 294: 133730, 2022 May.
Article in English | MEDLINE | ID: mdl-35085619

ABSTRACT

The leaf extract of Muntingia calabura is being first reported to be used for the synthesis superparamagnetic hematite nanoparticles by following the green-chemistry approach. Field Emission - Scanning Electron Microscopic image revealed the formation of irregular nano spheroids averaging at 48.57 nm in size and characteristic of Fe and O atoms, as revealed by Energy Dispersive X-Ray spectrum. X-ray diffraction analysis results proved the crystallinity of hematite diffraction planes with crystallite sizes averaging at 30.68 nm. The lattice parameter values stayed concordant with the literature. The superparamagnetic nature was attested by the high value of saturation magnetism (2.20 emu/g) with negligible coercivity and retentivity. Fourier Transform Infrared Spectroscopy results affirmed numerous moieties involved in the synthesis of hematite nanoparticles and the existence of signature Fe-O bands. Thermogravimetric analysis studies portrayed the thermal behavior nanoparticles with 28% weight loss and thermal stability was attained after 700 °C. X-ray photoelectron spectroscopy analysis confirmed the valence states of Fe and O in the hematite nanoparticles and ascertained the purity. The mesoscopic structure was revealed by Brunauer-Emmett-Teller studies with considerable surface area (112.50 m2/g). The Fenton-like catalysis mediated by the nanoparticle sample was demonstrated by degrading methylene blue dye. The remarkable degradation efficiency of 93.44% was obtained and the kinetics was conformed to a second-order model with a high R2 value. Therefore, the highly crystalline and mesoporous superparamagnetic hematite spheroids prepared using the leaf extract of M. calabura would find promising applications in various catalysis processes.


Subject(s)
Ferric Compounds , Methylene Blue , Catalysis , Ferric Compounds/chemistry , Magnetic Iron Oxide Nanoparticles , Methylene Blue/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...