Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Proteins Proteom ; 1871(4): 140916, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37061152

ABSTRACT

TDP-43 is a vital nucleic acid binding protein which forms stress-induced aberrant aggregates in around 97% cases of ALS, a fatal neurodegenerative disease. The functional tandem RRM domain of the protein (TDP-43tRRM) has been shown to undergo amyloid-like aggregation under stress in a pH-dependent fashion. However, the underlying thermodynamic and molecular basis of aggregation and how the energy landscape of folding, stability, and aggregation are coupled and modulated by nucleic acid binding is poorly understood. Here, we show that the pH stress thermodynamically destabilizes the native protein and systematically populates the unfolded-like aggregation-prone molecules which leads to amyloid-like aggregation. We observed that specific DNA binding inhibits aggregation and populates native-like compact monomeric state even under low-pH stress as measured by circular dichroism, ANS binding, size exclusion chromatography, and transmission electron microscopy. We show that DNA-binding thermodynamically stabilizes and populates the native state even under stress and reduces the population of unfolded-like aggregation-prone molecules which leads to systematic aggregation inhibition. Our results suggest that thermodynamic modulation of the folding and aggregation energy landscape by nucleic-acid-like molecules could be a promising approach for effective therapeutic intervention in TDP-43-associated proteinopathies.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Nucleic Acids , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyloid/chemistry , Amyloidogenic Proteins , Thermodynamics , DNA-Binding Proteins/chemistry , DNA
2.
J Phys Chem B ; 125(30): 8383-8394, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34318672

ABSTRACT

Nutrient starvation stress acidifies the cytosol and leads to the formation of large protein assemblies and misfolded aggregates. However, how starvation stress is sensed at the molecular level and leads to protein misfolding is poorly understood. TDP-43 is a vital protein, which, under stress-like conditions, associates with stress granule proteins via its functional nucleic-acid-binding domains (TDP-43tRRM) and misfolds to form aberrant aggregates. Here, we show that the monomeric N form of TDP-43tRRM forms a misfolded amyloid-like protein assembly, ß form, in a pH-dependent manner and identified the critical protein side-chain residue whose protonation triggers its misfolding. We systematically mutated the three buried ionizable residues, D105, H166, and H256, to neutral amino acids to block the pH-dependent protonation-deprotonation titration of their side chain and studied their effect on the N-to-ß transition. We observed that D105A and H256Q resembled TDP-43tRRM in their pH-dependent misfolding behavior. However, H166Q retains the N-like secondary structure under low-pH conditions and does not show pH-dependent misfolding to the ß form. These results indicate that H166 is the critical side-chain residue whose protonation triggers the misfolding of TDP-43tRRM and shed light on how stress-induced misfolding of proteins during neurodegeneration could begin from site-specific triggers.


Subject(s)
Amyloid , Protein Folding , Amyloidogenic Proteins , Biophysical Phenomena , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
3.
Biophys Chem ; 274: 106591, 2021 07.
Article in English | MEDLINE | ID: mdl-33895555

ABSTRACT

The contribution of electrostatic interactions in protein stability has not been fully understood. Burial of an ionizable amino acid inside the hydrophobic protein core can affect its ionization equilibrium and shift its pKa differentially in the native (N) and unfolded (U) states of a protein and this coupling between the folding/unfolding cycle and the ionization equilibria of the ionizable residue can substantially influence the protein stability. Here, we studied the coupling of the folding/unfolding cycle with the ionization of a buried ionizable residue in a multi-domain protein, Human Serum Albumin (HSA) using fluorescence spectroscopy. A pH-dependent change in the stability of HSA was observed in the near native pH range (pH 6.0-9.0). The protonation-deprotonation equilibrium of a single thiol residue that is buried in the protein structure was identified to give rise to the pH-dependent protein stability. We quantified the pKa of the thiol residue in the N and the U states. The mean pKa of the thiol in the N state was upshifted by 0.5 units to 8.7 due to the burial of the thiol in the protein structure. Surprisingly, the mean pKa of the thiol in the U state was observed to be downshifted by 1.3 units to 6.9. These results indicate that some charged residues are spatially proximal to the thiol group in the U state. Our results suggest that, in addition to the N state, electrostatic interactions in the U state are important determinants of protein stability.


Subject(s)
Serum Albumin, Human/chemistry , Humans , Hydrogen-Ion Concentration , Protein Folding , Protein Stability , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...