Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 26(12): 10334-40, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20462234

ABSTRACT

A kinetic study of the electroless deposition of copper on gold, using dimethylamine borane (DMAB) as a reducing agent, has been carried out. The copper deposition rate in the electroless bath was determined to be 50 nm min(-1), through electrochemical stripping of the copper deposits as well as from direct measurements of the film thickness using atomic force microscopy (AFM). Comparison with a galvanic cell setup, where the two half-reactions were physically separated, yielded a lower deposition rate of 30 nm min(-1). An important kinetic effect of the surface on the oxidation of the reducing agent, and thus on the overall process, was therefore revealed. The efficiency of the process was measured over time, revealing the contribution of side reactions in the cathodic half-cell, particularly during the initial stages of the electroless process.

2.
J Chem Phys ; 127(2): 024702, 2007 Jul 14.
Article in English | MEDLINE | ID: mdl-17640140

ABSTRACT

The adsorption of semifluorinated alkanethiols on Au/mica was studied by scanning tunneling microscopy (STM). The adlayer structure produced is based on a p(2 x 2) structure though lines of molecules displayed extensive kinks and bends. In addition, a considerable variation in the contrast of molecular features is found. Molecular modeling calculations confirm that, for the fluorinated thiols, inequivalently adsorbed molecules within a p(2 x 2) registry are present, an aspect that endows the local structure of the adlayer with a higher flexibility in comparison to nonfluorinated thiols, where one adsorption site is strongly favored in a (radical 3 x radical 3) R30 degrees structure. Simulated STM imaging on the optimized systems successfully recovered the effects on the molecular feature contrast induced by the flexibility of the fluorinated thiol adlayer.

3.
Nat Nanotechnol ; 2(8): 486-9, 2007 Aug.
Article in English | MEDLINE | ID: mdl-18654345

ABSTRACT

Nanocrystals are under active investigation because of their interesting size-dependent properties and potential applications. Silicon nanocrystals have been studied for possible uses in optoelectronics, and may be relevant to the understanding of natural processes such as lightning strikes. Gas-phase methods can be used to prepare nanocrystals, and mass spectrometric techniques have been used to analyse Au and CdSe clusters. However, it is difficult to study nanocrystals by such methods unless they are synthesized in the gas phase. In particular, pre-prepared nanocrystals are generally difficult to sublime without decomposition. Here we report the observation that films of alkyl-capped silicon nanocrystals evaporate upon heating in ultrahigh vacuum at 200 degrees C, and the vapour of intact nanocrystals can be collected on a variety of solid substrates. This effect may be useful for the controlled preparation of new quantum-confined silicon structures and could facilitate their mass spectroscopic study and size-selection.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Silicon/chemistry , Alkylation , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties , Vacuum
SELECTION OF CITATIONS
SEARCH DETAIL
...