Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 946: 173816, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38852872

ABSTRACT

Arsenic-containing hydrocarbons (AsHC), a subclass of arsenolipids (AsL), have been proven to exert neuro- and cytotoxic effects in in-vitro and in-vivo studies and were shown to pass through biological barriers like the blood-brain barrier. However, there has been no connection as to the environmental relevance of these findings, meaning there is no study based on samples from free living animals that are exposed to these compounds. Here, we report the identification of two AsHC as well as 3 arsenosugar phospholipids (AsPL) in the brains of a pod of stranded long-finned pilot whales (Globicephala melas) as well as the absence of arsenobetaine (AsB) which is often found to be a dominant As species in fish. We show data which suggests that there is an age-dependent accumulation of AsL in the brains of the animals. The results show that, in contrast to other organs, total arsenic as well as arsenolipids accumulate in an asymptotic pattern in the brains of the animals. Total As concentrations were found to range from 87 to 260 µg As/kg wet weight and between 0.6 and 27.6 µg As/kg was present in the form of AsPL958 in the brains of stranded pilot whales which was the most dominant lipophilic species present. The asymptotic relationship between total As, as well as AsPL, concentration in the brain and whale age may suggest that the accumulation of these species takes place prior to the full development of the blood-brain barrier in young whales. Finally, comparison between the organs of local squid, a common source of food for pilot whales, highlighted a comparable AsL profile which indicates a likely bioaccumulation pathway through the food chain.


Subject(s)
Brain , Water Pollutants, Chemical , Whales, Pilot , Animals , Whales, Pilot/metabolism , Brain/metabolism , Water Pollutants, Chemical/metabolism , Arsenic/metabolism , Bioaccumulation , Arsenicals/metabolism , Environmental Monitoring
2.
J Hazard Mater ; 458: 131975, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37399722

ABSTRACT

The rate of decommissioning of global oil and gas production facilities will accelerate over coming decades, as mature developments reach the end of use, and consumers transition towards renewable energy. Decommissioning strategies should include thorough environmental risk assessments which consider contaminants which are known to be present in oil and gas systems. Mercury (Hg) is a global pollutant that occurs naturally in oil and gas reservoirs. However, knowledge of Hg contamination in transmission pipelines and process equipment is limited. We investigated the potential for accumulation of Hg0 within production facilities, particularly those transporting gases, by considering the deposition of Hg onto steel surfaces from the gas phase. Following incubation experiments in a Hg saturated atmosphere; fresh API 5L-X65 and L80-13Cr steels were found to adsorb 1.4 × 10-5 ± 0.04 × 10-5 and 1.1 × 10-5 ± 0.04 × 10-5 g m-2, respectively, while corroded samples of the same steels adsorbed 0.12 ± 0.01 and 0.83 ± 0.02 g m-2; an increase in adsorbed mercury by four orders of magnitude. The association between surface corrosion and Hg was demonstrated by laser ablation ICPMS. The levels of Hg measured on the corroded steel surfaces indicates a potential environmental risk; therefore, mercury speciation (including the presence of ß-HgS, not considered in this study), concentrations and cleaning methods should be considered when developing oil and gas decommissioning strategies.

3.
Anal Chem ; 93(37): 12733-12739, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34499489

ABSTRACT

Nanoscale secondary ion mass spectrometry (NanoSIMS) is a dynamic SIMS technique, which offers high spatial resolution allowing the mapping of chemical elements at the nanometer scale combined with high sensitivity. However, SIMS for mercury analysis is a challenging issue due to the low secondary ion yield and has never been done on NanoSIMS. The introduction of an rf plasma oxygen primary ion source on NanoSIMS enabled higher lateral resolution and higher sensitivity for electropositive elements such as most metals. In this paper, for the first time, mercury analysis by NanoSIMS was developed applying the new rf plasma O- ion source. All mercury isotopes could be detected as Hg+ secondary ions and the isotopic pattern corresponded to their natural isotopic abundances. Furthermore, Hg+ detection in HgSe nanocrystals has been investigated where polyatomic interferences from selenium clusters were identified and separated by high mass resolution (ΔM/M ≥ 3200). However, in the presence of selenium a strong matrix effect was observed, decreasing the Hg+ secondary ion yield. In addition, a detection of Se+ ions was possible, too. The newly developed method was successfully applied to nanoscale localization by chemical imaging of HgSe particles accumulated in the liver tissue of sperm whale (Physeter macrocephalus). This demonstrated the applicability of NanoSIMS not only for mercury detection in surface analysis but also for mercury mapping in biological samples.


Subject(s)
Mercury , Selenium , Animals , Liver , Spectrometry, Mass, Secondary Ion , Whales
4.
J Trace Elem Med Biol ; 61: 126502, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32344278

ABSTRACT

OBJECTIVE: We address two questions relevant to infants' exposure to potentially toxic arsenolipids, namely, are the arsenolipids naturally present in fish transported intact to a mother's milk, and what is the efficiency of this transport. METHODS: We investigated the transport of arsenolipids and other arsenic species present in fish to mother's milk by analyzing the milk of a single nursing mother at 15 sampling times over a 3-day period after she had consumed a meal of salmon. Total arsenic values were obtained by elemental mass spectrometry, and arsenic species were measured by HPLC coupled to both elemental and molecular mass spectrometry. RESULTS: Total arsenic increased from background levels (0.1 µg As kg-1) to a peak value of 1.72 µg As kg-1 eight hours after the fish meal. The pattern for arsenolipids was similar to that of total arsenic, increasing from undetectable background levels (< 0.01 µg As kg-1) to a peak after eight hours of 0.45 µg As kg-1. Most of the remaining total arsenic in the milk was accounted for by arsenobetaine. The major arsenolipids in the salmon were arsenic hydrocarbons (AsHCs; 55 % of total arsenolipids), and these compounds were also the dominant arsenolipids in the milk where they contributed over 90 % of the total arsenolipids. CONCLUSIONS: Our study has shown that ca 2-3 % of arsenic hydrocarbons, natural constituents of fish, can be directly transferred unchanged to the milk of a nursing mother. In view of the potential neurotoxicity of AsHCs, the effects of these compounds on the brain developmental stage of infants need to be investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...