Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Curr Top Med Chem ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778617

ABSTRACT

Introduced into law enforcement in 1976, the oleoresin capsicum (OC) spray has been labeled as one of the most significant and radical developments in law enforcement. However, epidemiological research on OC health effects is deficient, receiving little public support. The major responses to acute exposure to OC spray can be found in the pulmonary system. The molecular mechanism(s) involved in the action of capsaicinoids, the active constituents in OC, are complex cascades of reactions which end up in necrosis or apoptosis. OC may also damage and deplete biological redox systems in the epithelial lining fluids and within cells and mitochondria, modifying structural proteins and nucleic acids and leading to enzyme inactivation. Since there are no characteristic laboratory tests available for identification or confirmation of OC exposure, and on the basis of prevailing data, reassessment of the health risks of OC exposures in vulnerable populations and in-depth study of the molecular mechanics of receptors is the need of the hour for the development of effective countermeasures. This review aims to consider evidence for adverse effects of OC spray used in ways comparable to their application by law enforcement personnel and civilians, with possible treatment recommendations that are precedent for improved management.

2.
Article in English | MEDLINE | ID: mdl-37957906

ABSTRACT

Obesity is rapidly becoming a global health problem affecting about 13% of the world's population affecting women and children the most. Recent studies have stated that obese asthmatic subjects suffer from an increased risk of asthma, encounter severe symptoms, respond poorly to anti-asthmatic drugs, and ultimately their quality-of-life decreases. Although, the association between airway hyperresponsiveness (AHR) and obesity is a growing concern among the public due to lifestyle and environmental etiologies, however, the precise mechanism underlying this association is yet to establish. Apart from aiming at the conventional antiasthmatic targets, treatment should be directed towards ameliorating obesity pathogenesis too. Understanding the pathogenesis underlying the association between obesity and AHR is limited, however, a plethora of obesity pathologies have been reported viz., increased pro-inflammatory and decreased anti-inflammatory adipokines, depletion of ROS controller Nrf2/HO-1 axis, NLRP3 associated macrophage polarization, hypertrophy of WAT, and down-regulation of UCP1 in BAT following down-regulated AMPKα and melanocortin pathway that may be correlated with AHR. Increased waist circumference (WC) or central obesity was thought to be related to severe AHR, however, some recent reports suggest body mass index (BMI), not WC tends to exaggerate airway closure in AHR due to some unknown mechanisms. This review aims to co-relate the above-mentioned mechanisms that may explain the copious relation underlying obesity and AHR with the help of published reports. A proper understanding of these mechanisms discussed in this review will ensure an appropriate treatment plan for patients through advanced pharmacological interventions.

3.
Heliyon ; 9(4): e15347, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37101636

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), a chronic liver condition affects a large number of people around the world with a frequency of 25% of all the chronic liver disease worldwide. Several targets viz. anti-inflammatory, anti-apoptotic and, anti-fibrotic factors, anti-oxidant and insulin-sensitizing pathways, metabolic regulators as well as repurposing traditional medications have been studied for the pharmacologic therapy of NAFLD. Newer pharmacotherapies like caspases blockade, agonists of PPAR and farnesoid X receptor agonists are currently being investigated in treating human NAFLD. However, NAFLD has no FDA-approved pharmacological therapy, therefore there is a considerable unmet therapy need. Apart from the conventional treatment regime, the current approaches to treating NAFLD include lifestyle interventions including healthy diet with adequate nutrition and physical activity. Fruits are known to play a key role in the well-being of human health. Fruits are loaded with a repertoire of bioactive phytoconstituents like catechins, phytosterols, proanthocyanidin, genestin, daidzen, resveratrol, magiferin found in fruits like pear, apricot, strawberries, oranges, apples, bananas, grapes, kiwi, pineapple, watermelon, peach, grape seed and skin, mango, currants, raisins, dried dates, passion fruit and many more. These bioactive phytoconstituents are reported to demonstrate promising pharmacological efficacy like reduction in fatty acid deposition, increased lipid metabolism, modulation of insulin signaling pathway, gut microbiota and hepatic inflammation, inhibition of histone acetyltransferase enzymatic activity to name a few. Not only fruits, but their derivatives like oils, pulp, peel, or their preparations are also found to be equally beneficial in various liver diseases like NAFLD, NASH. Although most of the fruits contains potent bioactive phytoconstituents, however, the presence of sugar in fruits put a question mark on the ameliorative property of the fruits and there has been contrasting reports on the glycemic control post fruit consumption in type 2 diabetic patients. This review is an attempt to summarize the beneficial effects of fruit phytoconstituents on NAFLD based on epidemiological, clinical and experimental evidence, focusing especially on their mechanisms of action.

4.
Biomed Pharmacother ; 149: 112901, 2022 May.
Article in English | MEDLINE | ID: mdl-36068771

ABSTRACT

Despite enormous development in the field of drug development, cancer still remains elusive. Compromised immunity stands as a roadblock to the successful pharmacological execution of anti-cancer drugs used clinically currently. Recently some breakthrough cancer treatment strategy like nano-formulation, extracellular vesicles treatment, natural antioxidant therapy, targeted immunotherapy, gene therapy, thermal ablation and magnetic hyperthermia, and pathomics and radiomics has been developed and tested pre-clinically as well as clinically. However, clinical efficacy of such therapies is yet to establish and some are too costly to be utilized by patients from poor and developing countries. At this juncture, researchers are heading towards the search of medicines from natural sources that is higher safety margin and multitarget pharmacological efficacy compared to conventional treatments. Mushroom is used traditionally as food as well as drug since time immemorial due to its immunomodulatory effect which is loaded with proteins, low fat content and cholesterol. Mushrooms are recommended as one of the best vegetarian diets for immunosuppressed cancer and HIV/AIDS patients. Mushrooms are well-known for their anti-cancer activity that impacts hematopoietic stem cells, lymphocytes, macrophages, T cells, dendritic cells (DCs), and natural killer (NK) cells in the immune system. This comprehensive review article emphasizes on the molecular mechanisms of cancer genesis, conventional anti-cancer therapy as well as reported some significant breakthrough in anti-cancer drug development, anti-cancer activity of some selected species of mushrooms and their bioactive phytoconstituents followed by a brief discussion of recent anti-cancer efficacy of some metallic nanoparticles loaded with mushrooms.


Subject(s)
Agaricales , Antineoplastic Agents , Neoplasms , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Immunity , Immunotherapy , Neoplasms/drug therapy
6.
Toxicol Res (Camb) ; 10(6): 1129-1143, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34956616

ABSTRACT

Sensory irritation is an acute adverse effect leading to temporary disability posed by riot control agents in various deployable forms are utilized by defense personal in violent mob attacks but their irreversible toxic effects and risk assessment have been a matter of concern. These intimidating risks of available riot control agents have led to exploring the pulmonary toxicity profile of the oil in water emulsion formulation developed for vicious crowd controls containing an irritant oleoresin capsicum, a malodorant (skatole), and a commercial dye, followed by characterization using standard methods. Nonlethal riot control combinational formulation (NCF) has been aimed to be the best possible low-lethal alternative for riot control measures. In this study, 30 min of acute inhalation exposure of NCF was given to Wistar rats and various respiratory parameters like lung dynamics, bronchoalveolar lavage fluid (BALF) cytological assays, pro-inflammatory cytokines estimation, antioxidant activity, collagen accumulation, cytotoxicity, in vivo lung imaging, western blot, histology of lung tissue, etc. were investigated to validate its potentiality and rate of irritation reversibility as nonlethal agents. An exaggerated physiological change like sensory irritation, changes in lung functional variables, increased pro-inflammatory cytokines, etc. were noticed initially without airway obstruction as the expression of nociceptive TRPV1 protein did not alter the physiological regulation of protective proteins like Nrf2 and HO-1 and also no abnormality was found in lung tissue architecture. In conclusion, it can be stated that this formulation can be explored as a nonlethal riot control agent intending to generate discomfort but with early reversibility of sensory irritation and no recurrence of toxicity.

7.
Clin Exp Pharmacol Physiol ; 48(11): 1523-1536, 2021 11.
Article in English | MEDLINE | ID: mdl-34314522

ABSTRACT

Mast cell activation is initiated by two signalling pathways: immunoglobulin E (IgE)-dependent and IgE-independent pathway. It is reported that the IgE-independent type or pseudo-allergy pathway gets activated by G-protein-dependent activation of the mast cell. Recently, adiponectin (APN) receptors, AdipoR1, and AdipoR2 have been identified as G-protein-coupled receptors (GPCRs). Interestingly, APN replenishment is reported to activate the Nrf2/HO-1 signalling axis. However, no study has been performed interlinking the role of APN and the Nrf2/HO-1 signalling axis in pseudo-allergic reaction. In the present study, we evaluated the anti-pseudo-allergic effects of ß-caryophyllene, an FDA-approved food additive, in activating AdipoR1/AdipoR2 and Nrf2/HO-1 axis signalling pathway. Compound 48/80 (C48/80)-induced systemic and cutaneous anaphylaxis-like shock in BALB/c mice was performed to assess the efficacy of ß-caryophyllene (BCP). To assess the effect of BCP in anaphylactic hypotension, mean arterial pressure was measured in Wistar rats. Inhibitory properties of BCP in mast cell degranulation were estimated in rat peritoneal mast cells (RPMCs). ELISA was performed to estimate interleukin (IL)-6, tumour necrosis factor (TNF), IL-1ß, IgE, ovalbumin (OVA)-IgE and APN and western blotting for protein expression of Nrf2/HO-1 and AdipoR1-AdipoR2. BCP dose-dependently inhibited systemic and cutaneous anaphylaxis-like shock induced by C48/80. BCP dose-dependently inhibited the mast cell degranulation followed by inhibition of histamine release. Also BCP dose-dependently activated the Nrf2/HO-1 and AdipoR1-AdipoR2 signalling axis pathway. Moreover, BCP reversed the drop in blood pressure when the haemodynamic parameters were accessed. Our findings suggest that BCP is a potent AdipoR1/AdipoR2-Nrf2/HO-1 axis pathway agonist that may suppress the IgE-independent pathway towards allergic response to secretagogues.


Subject(s)
p-Methoxy-N-methylphenethylamine
8.
Phytomedicine ; 89: 153610, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34175589

ABSTRACT

BACKGROUND: Obesity worsens airway hyperresponsiveness (AHR) in asthmatic subjects by up-regulating macrophage polarization that leads to excessive secretion of pro-inflammatory adipokines from white adipose tissue followed by generation of oxidative stress in the respiratory system. Treatment through conventional signaling pathways proved to be inadequate in obese asthmatics, so a therapeutical approach through a non-conventional pathway may prove to be effective. PURPOSE: This study aimed to investigate the efficacy of a FDA-approved food additive, ß-caryophyllene (BCP) in obesity-associated AHR. METHOD: A repertoire of protein expression, cytokine and adiponectin estimation, oxidative stress assays, histopathology, and fluorescence immune-histochemistry were performed to assess the efficacy of BCP in C57BL/6 mice model of obesity-associated AHR. Additionally, human adipocyte was utilized to study the effect of BCP on macrophage polarization in Boyden chamber cell culture inserts. RESULTS: Obesity-associated AHR is ameliorated by administration of BCP by inhibition of the macrophage polarization by activation of AMPKα, Nrf2/HO-1 and AdipoR1 and AdipoR2 signaling pathway, up-regulation of adiponectin, GLP-1, IFN-γ, SOD, catalase and down-regulation of NF-κB, leptin, IL-4, TNF, and IL-1ß. Browning of eWAT by induction of thermogenesis and activation of melanocortin pathway also contributed to the amelioration of obesity-associated AHR. We conclude that BCP ameliorated the obesity-associated AHR via inhibition of macrophage polarization, activation of AMPKα, Nrf2/HO-1, and up-regulation of AdipoR1 and AdipoR2 expression and down-regulation of NFκB expression in lung of animal. CONCLUSION: Being an FDA-approved food additive, BCP may prove to be a safe and potential agent against obesity-associated AHR.


Subject(s)
Adipocytes/drug effects , Obesity , Polycyclic Sesquiterpenes/pharmacology , Respiratory Hypersensitivity , Animals , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Obesity/complications , Obesity/drug therapy , Respiratory Hypersensitivity/drug therapy , Respiratory Hypersensitivity/etiology
9.
Sci Rep ; 11(1): 3357, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558597

ABSTRACT

Burn injuries are most challenging to manage since it causes loss of the integrity of large portions of the skin leading to major disability or even death. Over the years, hydrogels are considered as a significant delivery system for wound treatment because of several advantages over other conventional formulations. We hypothesized that the bFGF-collagen-AgSD incorporated hydrogel formulation can accelerate the rate of burn healing in animal model and would promote fibroblast cell proliferation. Neovascularization and re-epithelialization is a hall mark of burn wound healing. In the present study, histopathological investigation and scanning electron microscopy of skin tissue of Wistar rats showed almost complete epithelialisation after 16 days in the treatment group. The developed hydrogel showed significantly accelerated wound closure compared with a standard and control group. The faster wound closure resulted from increased re-epithelialization and granulation tissue formation because of the presence of collagen and growth factor. Expressions of proteins such as TrkA, p- TrkA, ERK1/2, p-ERK1/2, NF-kß, and p-NF-kß involved in nerve growth factor (NGF) signalling pathway were analysed by western blot. All the findings obtained from this study indicated that the hydrogel can be considered as a promising delivery system against second degree burn by faster healing.


Subject(s)
Burns , Collagen/pharmacology , Fibroblast Growth Factor 2/pharmacology , Hydrogels/pharmacology , MAP Kinase Signaling System/drug effects , Animals , Burns/drug therapy , Burns/metabolism , Burns/pathology , Collagen/chemistry , Fibroblast Growth Factor 2/chemistry , Hydrogels/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Rats , Rats, Wistar , Receptor, trkA/metabolism
10.
Toxicol Appl Pharmacol ; 405: 115188, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32805267

ABSTRACT

Cardiopulmonary functions such as respiratory depression, severe irritation, inflamed respiratory tract, hyperventilation and, tachycardia are the most affected ones when it comes to the riot control agent oleoresin capsicum (OC) exposure. However, no studies have been done to elucidate the mechanism underlying deterioration of the combined cardiopulmonary functions. Parameters such as acute respiratory, cardiac, parameters and ultrasonography (USG) measurements were investigated in an in vivo setup using Wistar rats at 1 h and 24 h post inhalation exposure to 2%, 6% and 10% OC, whereas, cell migration in rat peritoneal mast cells (RPMCs), metabolomics and eosinophil peroxidase (EPO) activity in bronchoalveolar lavage fluid (BALF) were investigated in an in vitro setup. Results obtained from electrophysiological recording indicated that OC exposure produces apnea and decrease in mean arterial pressure (MAP) was obtained from hemodynamic parameters whereas cardiac parameters assessment revealed increase in the level of cardiac output (CO) and decrease in stroke volume (SV) with recovery towards the post-exposure period. A decrease in the percentage area of certain fatty acid pathway metabolites in BALF appropriately linked the lung injury following OC exposure which was further cemented by increasing concentration of EPO. Histopathology and SEM also proved to be favorable techniques for the detection of OC induced physiological cardiac and pulmonary modifications respectively. Furthermore, Boyden chamber experiment established the chemoattractant property of OC. It may be concluded from the above studies that these newly reported facets may be utilized pharmacologically to mitigate cardiopulmonary adverse effects owing to OC exposure.


Subject(s)
Heart/drug effects , Heart/physiopathology , Inhalation Exposure/adverse effects , Lung/drug effects , Lung/physiopathology , Plant Extracts/toxicity , Riot Control Agents, Chemical/toxicity , Animals , Biomarkers/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Electrocardiography , Heart/diagnostic imaging , Hemodynamics/drug effects , Lung/diagnostic imaging , Lung/metabolism , Male , Myocardium/metabolism , Myocardium/pathology , Plant Extracts/pharmacokinetics , Rats , Rats, Wistar , Respiratory Function Tests , Riot Control Agents, Chemical/pharmacokinetics , Tissue Distribution
11.
Biochimie ; 175: 106-119, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32473183

ABSTRACT

After two decades of its discovery, numerous facts of adiponectin (APN) biology has been uncovered, yet, APN remains an elusive adipokine. Findings from clinical studies and animal models established APN's ameliorative role in cardiovascular disease (CVD) and pulmonary disease (PD) but the same condition is prognostic for mortality in the same set of patients which cornered APN towards a dubious state. A repertoire of mechanisms associated with the positive association of APN in both lean/cachectic or obese CVD and PD patients from past publications are evaluated. Newer pharmacological agent may be explored to regulate elevated blood APN concentration in COPD or CHF patients whereas administration of recombinant APN as well as growth hormone may augment blood APN concentration in obese subjects associated with low blood and intracellular APN concentration. However, some APN directed therapy in clinical as well as in pre-clinical setup has pronounced some contentious effects. After reviewing the mechanisms of the contentious role of APN functioning in pathologic conditions of CVD and PD in both lean and obese conditions, the authors came to conclusion that APN directed therapy may be utilized with caution keeping in mind the different age group, sex and the different CVD as well as pulmonary diseases they are suffering from.


Subject(s)
Adiponectin/blood , Cardiovascular Diseases , Obesity , Pulmonary Disease, Chronic Obstructive , Animals , Cardiovascular Diseases/blood , Cardiovascular Diseases/therapy , Disease Models, Animal , Humans , Obesity/blood , Obesity/therapy , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/therapy
12.
Exp Lung Res ; 46(3-4): 81-97, 2020.
Article in English | MEDLINE | ID: mdl-32131645

ABSTRACT

Aim: The use of oleoresin capsicum (OC) sprays, due to their irreversible health effects has now grown into a matter of heated debate. In the present study, the early phase pulmonary events involving chemotactic and inflammatory mediators after short-exposure duration to OC have been presented.Materials and methods: Female Wistar rats used in the evaluation of respiratory parameters at 1 h, 3 h, and 24 h post-exposure, were sacrificed for the evaluation of blood cell counts, BALF cytokine estimation, lung capillary leakage, study of oxidative stress and histopathology of the lungs.Results: Results confirmed a dose-dependent effect of OC exposure on serum clinical chemistry and hematological parameters. Subsequent upregulation of IL-l and TNF-α indicated lung's responses to acute oxidant-induced injury and inflammation after OC exposure. Significant alterations in the pulmonary levels of reactive oxygen intermediates were seen following the inhalation of OC. Infiltration of polymorphonuclear leukocytes, mostly neutrophils, into the site of infection was evident in the cytocentrifuged samples of BALF. Histological samples of rat lung sections revealed the recruitment of inflammatory cells in the airways and around blood vessels in the subepithelium of conducting airways.Conclusion: Results of the present study demonstrated that, exposure to OC spray may mitigate inflammatory response and development of acute lung injury in rats. However, it can be concluded that although OC spray causes pulmonary hazards in the aforementioned concentrations, it can be used as a non-lethal riot control agent in minimal concentration. Understanding the in-depth mechanism of action in the molecular and receptor level will help in developing effective antagonist against OC.


Subject(s)
Inhalation Exposure/adverse effects , Lung/drug effects , Plant Extracts/toxicity , Pulmonary Edema/chemically induced , Riot Control Agents, Chemical/toxicity , Animals , Cytokines/blood , Female , Oxidative Stress , Plant Extracts/immunology , Pulmonary Edema/blood , Rats, Wistar , Riot Control Agents, Chemical/immunology
13.
Drug Dev Ind Pharm ; 45(8): 1332-1341, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31116617

ABSTRACT

The present study is aimed at the development of a sunscreen cream for use in high altitude areas which have been found to possess superior sun protection factor (SPF) along with remarkable antioxidant activity. The topical formulation is a standard oil-in-water emulsion of a combination of United States Food and Drug Administration (US FDA) approved ultraviolet filters; along with melatonin and pumpkin seed oil. The in-silico optimized formulation was characterized using established methods and the stability study was carried out as per International Conference on Harmonization guidelines. The formulation was prepared after requisite pre-formulation analysis by Fourier-transform infrared spectroscopy, differential scanning calorimetric and thermogravimetric analyses; followed by characterization based on color, odor, phase separation, spreadability, specific gravity, homogeneicity, centrifugation and sensitivity. For the stability study, a total of three samples from three batches of the finished product were subjected to the stability study. The samples were analyzed for content uniformity, pH, in vitro SPF, rheology, zeta potential, droplet diameter and microbial analysis of the 0th day and also the the end of the storage period. Results obtained from the stability study indicated that the formulation possesses 50+ in vitro SPF value and remained stable for 6 months and 12 months under storage at 40 ± 2 °C and 75 ± 5% relative humidity; and -20 °C ± 5 °C respectively.


Subject(s)
Sunscreening Agents/chemistry , Altitude , Chemistry, Pharmaceutical/methods , Skin/drug effects , Sun Protection Factor/methods , Ultraviolet Rays/adverse effects
14.
Eur J Pharm Sci ; 127: 261-275, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30414837

ABSTRACT

The presence of 40-50% more UV radiation in high altitude areas renders the plethora of sunscreen products available in the market virtually ineffective. In this light of event, four US FDA approved UV filters were combined with melatonin and pumpkin seed oil to produce a broad spectrum sunscreen cream, which is envisaged to provide optimum sunprotection along with enhanced antioxidant activity. The objective of this study is to evaluate the protective effect of the sunscreen cream against UV radiation-induced skin photoaging in adult Wistar albino rats and identify its possible underlying mechanism. Wistar rats were exposed to broad spectrum UV radiation for 28 days. The test group received the sunscreen formulation dermally every day prior to UV radiation. The effects of the formulation against UV induced symptoms; viz. skin thickness and edema, in vivo antioxidant activities, inflammatory cytokines, collagen content, histopathological examination and expression of specific genes established the protective activity of the formulation. The test formulation was able to mitigate the harmful effects of UV radiation by increasing in vivo SOD, GSH-Px, CAT and collagen levels; decreasing skin edema, skin thickness and cytokines like IL-6, IL-1ß, TNF-α and TGF-ß1. UV radiation induced changes in histological architecture and arrangement of collagen and elastin fibers were also prevented by the test formulation. Finally, the formulation was able to regulate the expression of COL3A1, COX-2, bFGF, VEGF-C, Smad2, Smad4, Smad7 genes which induced significant photoprotective activity. The sunscreen formulation ameliorated UV induced photoaging by preventing oxidative collagen degradation and augmentation of TGF-ß-Smad-mediated collagen production.


Subject(s)
Antioxidants/pharmacology , Collagen/metabolism , Skin Aging/drug effects , Sunscreening Agents/pharmacology , Animals , Cytokines/metabolism , Male , Rats, Wistar , Signal Transduction , Skin/drug effects , Skin/metabolism , Skin/radiation effects , Skin Aging/physiology , Skin Aging/radiation effects , Smad Proteins/metabolism , Sun Protection Factor , Ultraviolet Rays
15.
Drug Chem Toxicol ; 42(5): 552-558, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30081682

ABSTRACT

Paraquat (PQ), a highly popular agricultural herbicide, is a serious occupational hazard with lethality reported at doses as low as 35 mg/kg body weight with intoxication occurring via inhalation or dermal route. The main objective of this study was to determine the median lethal concentration (LCt50) of paraquat through whole body exposure in adult male Wistar rats. Aerosolized PQ dissolved in water was delivered in a dose-dependent manner, to fully conscious rats confined in whole body plethysmograph (WBP), in a nebulized form with concentrations ranging from 40-200 mg/kg of air over a 4 h exposure period. Animals were observed up to 24-48 h post-exposure to observe any lethality. LCt50 estimates (±95% confidence interval) were obtained from the sequential stage-wise experiments using probit analysis. Rat lungs were examined radiologically and histopathologically. Gas chromatography-mass spectrometry (GC-MS) analysis determined the correlation of PQ accumulation in the lungs with the actual exposed dose of PQ. The actual LCt50 was found to be 218 g·min/m3 whereas 57.9 ± 2.90 µg/g of PQ accumulated in the lungs of each lifeless animal. All animals exhibited severe respiratory changes and pulmonary abnormalities. This study demonstrated that when compared with the actually exposed dose, the amount of PQ that accumulated in the lungs was very low, but enough to cause death in 50% of animal population and cause pulmonary abnormalities in each of the experimental animal. The PQ exposure carried out in WBP also facilitated the dermal absorption of aerosolized PQ, which replicated the real-life situation in workers operating with PQ.


Subject(s)
Herbicides/toxicity , Inhalation Exposure/adverse effects , Lung/drug effects , Paraquat/toxicity , Respiration/drug effects , Aerosols , Animals , Dose-Response Relationship, Drug , Lethal Dose 50 , Lung/pathology , Male , Rats, Wistar
16.
Drug Chem Toxicol ; 41(2): 147-154, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28523965

ABSTRACT

Gramine is a natural indole alkaloid that has been isolated from different raw plants occurring mainly in Avena sativa, etc. The study was aimed to investigate the possible in vitro antioxidant, in vitro mutagenic, in vitro antimutagenic, and in vivo genotoxic activity of gramine using ferric reducing ability of plasma (FRAP) assay, Metal chelating, Ames bacterial reverse mutation test, and the mouse bone marrow micronucleus assay as well as chromosomal aberration. Four concentrations of gramine viz. 250, 500, 1000, and 2000 µg/mL were evaluated for its antioxidant activity in FRAP Assay and Metal Chelating Test. Four concentrations of gramine (1250 µg/plate, 2500 µg/plate, 5000 µg/plate, and 10 000 µg/plate) were employed in Salmonella typhimurium strains to study the mutagenicity in the presence and absence of standard mutagens, 2-aminofluorene (2-AF), sodium azide (SA), and 2-nitrofluorene (2-NF). Three doses, i.e. 0.1, 0.2, and 0.3 × the LD50 of gramine (i.e. 50 mg/kg, 100 mg/kg, and 150 mg/kg) were administered orally to either sex of Swiss albino mice for 48 h to study the genotoxic activity in micronucleus assay as well as chromosomal aberration. Gramine showed potent antioxidant activity in both the assay. Gramine at the given dose lacks mutagenicity as well as found to possess antimutagenic efficacy. Interestingly, S9 enzymes increase the antimutagenic activity in a dose-dependent manner. There was no significant increase in the frequency of micronucleated polychromatic erythrocytes (MNPCEs), as well as no significant difference in the percentage of chromosomal aberrations was observed between the gramine groups and the negative groups but percentage of polychromatic erythrocytes (PCEs) is found to be higher in all the gramine groups. These results indicate significant antioxidant, non-mutagenic as well as non-genotoxic activity of gramine in vitro and in vivo in the given doses.


Subject(s)
Alkaloids/pharmacology , Antimutagenic Agents/pharmacology , Antioxidants/pharmacology , Avena , Edible Grain , Mutagenicity Tests , Alkaloids/chemistry , Alkaloids/isolation & purification , Alkaloids/toxicity , Animals , Antimutagenic Agents/chemistry , Antimutagenic Agents/isolation & purification , Antimutagenic Agents/toxicity , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/toxicity , Avena/chemistry , Avena/toxicity , Dose-Response Relationship, Drug , Edible Grain/chemistry , Edible Grain/toxicity , Female , Ferricyanides/chemistry , Indole Alkaloids , Iron Chelating Agents/pharmacology , Male , Mice , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Mutation , Oxidation-Reduction , Rats, Wistar , Risk Assessment , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics
17.
Biomed Pharmacother ; 96: 1501-1512, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29198921

ABSTRACT

Capsaicin, a well known vanilloid, has shown evidence of an ample variety of biological effects which make it the target of extensive research ever since its identification. In spite of the fact that capsaicin causes health hazards in quite a few ways, yet, the verity cannot be ignored that capsaicin has several therapeutic implications. In patients with hypersensitive bladders, vesical instillation of 1 mM capsaicin markedly improved urinary frequency and urge incontinence. Again, administration of capsaicin favors an augmentation in lipid mobilization and a decrease in adipose tissue mass. Topical capsaicin cream as well decreases postsurgical neuropathic pain and is preferred by patients over a placebo among other therapies. Several in vitro studies have revealed that capsaicin results in growth arrest in some transformed cell lines. Furthermore, capsaicin has been proven to be an undeniably exciting molecule and remains a valuable drug for alleviating pain and itch. It has been recognized that capsaicinoids are the most potential agonists of capsaicin receptor (TRPV1). However, vanilloids could exert the beneficial effects not only through the receptor-dependent pathway but also through the receptor-independent one. The involvement of serotonin, neuropeptide Substance P and somatostatin in the pharmacological actions of capsaicin has been expansively investigated. Better understanding of the established TRPV1 receptor mechanism as well as exploring other possible receptor mechanism may publicize other new clinical efficacies of capsaicin. Further, clinical studies are required in several of these conditions to establish the efficacy of capsaicin.


Subject(s)
Capsaicin/pharmacology , Capsaicin/therapeutic use , Animals , Humans , TRPV Cation Channels/metabolism
18.
Indian J Pharmacol ; 49(2): 182-188, 2017.
Article in English | MEDLINE | ID: mdl-28706332

ABSTRACT

OBJECTIVE: Elsholtzia communis (Collett and Hemsl.) Diels has been widely distributed and is reported for many therapeutic effects. The present study aims to investigate the antistress activity of the leaf extract and its possible molecular mechanism. MATERIALS AND METHODS: Hydroethanolic extract of leaves of E. communis (100 and 200 mg/kg, p.o.) were administered for 7 days to stress-induced male Wistar rats. The experimental animals were divided into five groups (n = 6). The mRNA/protein profile of few stress responsive chaperones (hspa14), endoplasmic reticulum stress markers (C/EBP homologous protein [CHOP]), antioxidant regulating genes (nuclear factor (erythroid-derived 2)-like-2 factor [Nrf2]), apoptotic factors (Caspase-3) in rat hippocampus were studied by polymerase chain reaction and immunoblotting. RESULTS: The stress-related genes such as hspa14, CHOP, antioxidant gene Nrf2, apoptotic gene Caspase-3 which were overexpressed in the stress control group were significantly suppressed following administration of the extract at both the doses and the standard drug Ginseng. Likewise, brain-derived neurotrophic factor which is closely related with stress, was downregulated in the stress control group, was found to be upregulated following treatment with the extract and the standard drug Ginseng. CONCLUSION: Our findings clearly indicate that E. communis was able to counteract stress. Hence, it has the potential to develop as adaptogen and also as a replacement/substitute of the popularly used drug, Ginseng or Ashwagandha, which is on the verge of extinction or becoming endemic due to overuse.


Subject(s)
Lamiaceae , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Stress, Psychological , Animals , Brain-Derived Neurotrophic Factor/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Caspase 3/metabolism , Gene Expression Regulation/drug effects , HSP70 Heat-Shock Proteins/genetics , Hippocampus/drug effects , Hippocampus/metabolism , Male , NF-E2-Related Factor 2/genetics , Panax , Plant Leaves , Rats, Wistar , Stress, Psychological/drug therapy , Stress, Psychological/genetics , Stress, Psychological/metabolism , Transcription Factor CHOP/genetics
19.
Indian J Pharmacol ; 49(1): 42-48, 2017.
Article in English | MEDLINE | ID: mdl-28458421

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate anticholinergic, antihistaminic, and antiserotonergic activity of the n-hexane extract of the seeds of Zanthoxylum alatum (ZAHE) on isolated ileum of rat and guinea pig and fundus of rat. MATERIALS AND METHODS: ZAHE was prepared using soxhlet extraction and cumulative concentration response curves were constructed using various doses on the tissues for acetylcholine (ACh), 5-hydroxytryptamine (5-HT), and histamine with or without n-hexane extract. Atropine, ketanserin, and pheniramine maleate were used as antagonists for ACh, serotonin, and histamine, respectively. RESULTS: ZAHE-induced concentration-dependent inhibition of isolated ileum and fundus in rat and ileum of guinea pig. The half maximal effective concentration (EC50) of ACh in the presence of atropine (10-6 M; P < 0.05) and ZAHE (1000 µg/ml; P < 0.01) was significantly higher than EC50of ACh alone. The EC50of 5-HT in the presence of ketanserin (10-5 M; P < 0.01) and ZAHE (1000 µg/ml; P < 0.05) was higher than EC50of 5-HT alone. Similarly, the EC50of histamine in the presence of pheniramine maleate (10-6 M; P < 0.01) and ZAHE (300 µg/ml; P < 0.01 and 1000 µg/ml; P < 0.05) was also significantly higher than EC50of histamine alone. CONCLUSION: From the study, it was observed that ZAHE shows significant anticholinergic, antiserotonergic, and antihistaminic activity. The study provides sufficient evidence that the seeds can be used in gastric disorders, cough, chest infection, etc., as per folklore claims.


Subject(s)
Cholinergic Antagonists/pharmacology , Histamine Antagonists/pharmacology , Plant Extracts/pharmacology , Serotonin Antagonists/pharmacology , Zanthoxylum/chemistry , Acetylcholine/metabolism , Animals , Cholinergic Antagonists/administration & dosage , Cholinergic Antagonists/isolation & purification , Dose-Response Relationship, Drug , Gastric Fundus/drug effects , Gastric Fundus/metabolism , Guinea Pigs , Hexanes/chemistry , Histamine/metabolism , Histamine Antagonists/administration & dosage , Histamine Antagonists/isolation & purification , Ileum/drug effects , Ileum/metabolism , Male , Plant Extracts/administration & dosage , Rats , Rats, Wistar , Seeds , Serotonin/metabolism , Serotonin Antagonists/administration & dosage , Serotonin Antagonists/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...