Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(9)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37760122

ABSTRACT

Arterial thrombosis (AT) originates through platelet-mediated thrombus formation in the blood vessel and can lead to heart attack, stroke, and peripheral vascular diseases. Restricting the thrombus growth and its simultaneous monitoring by visualisation is an unmet clinical need for a better AT prognosis. As a proof-of-concept, we have engineered a nanoparticle-based theranostic (combined therapy and monitoring) platform that has the potential to monitor and restrain the growth of a thrombus concurrently. The theranostic nanotool is fabricated using biocompatible super-paramagnetic iron oxide nanoparticles (SPIONs) as a core module tethered with the anti-platelet agent Abciximab (ReoPro) on its surface. Our in vitro feasibility results indicate that ReoPro-conjugated SPIONS (Tx@ReoPro) can effectively prevent thrombus growth by inhibiting fibrinogen receptors (GPIIbIIIa) on the platelet surface, and simultaneously, it can also be visible through non-invasive magnetic resonance imaging (MRI) for potential reporting of the real-time thrombus status.

2.
ACS Nano ; 13(12): 14283-14293, 2019 12 24.
Article in English | MEDLINE | ID: mdl-31769966

ABSTRACT

Spinal cord injury (SCI) is one of the most debilitating injuries, and transplantation of stem cells in a scaffold is a promising strategy for treatment. However, stem cell treatment of SCI has been severely impaired by the increased generation of reactive oxygen species in the lesion microenvironment, which can lead to a high level of stem cell death and dysfunction. Herein, a MnO2 nanoparticle (NP)-dotted hydrogel is prepared through dispersion of MnO2 NPs in a PPFLMLLKGSTR peptide modified hyaluronic acid hydrogel. The peptide-modified hydrogel enables the adhesive growth of mesenchymal stem cells (MSCs) and nerve tissue bridging. The MnO2 NPs alleviate the oxidative environment, thereby effectively improving the viability of MSCs. Transplantation of MSCs in the multifunctional gel generates a significant motor function restoration on a long-span rat spinal cord transection model and induces an in vivo integration as well as neural differentiation of the implanted MSCs, leading to a highly efficient regeneration of central nervous spinal cord tissue. Therefore, the MnO2 NP-dotted hydrogel represents a promising strategy for stem-cell-based therapies of central nervous system diseases through the comprehensive regulation of pathological microenvironment complications.


Subject(s)
Cellular Microenvironment , Hydrogels/chemistry , Manganese Compounds/chemistry , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Nanoparticles/chemistry , Oxides/chemistry , Reactive Oxygen Species/metabolism , Spinal Cord Regeneration , Animals , Antioxidants/pharmacology , Cytoprotection/drug effects , Female , Humans , Motor Activity , Nanoparticles/ultrastructure , Nerve Fibers/pathology , Nerve Regeneration , Rats, Sprague-Dawley , Recovery of Function
3.
Nanomedicine ; 8(6): 842-52, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22094123

ABSTRACT

A stochastic variation in size and electrical parameters is common in nanoparticles. Synthesizing gold nanoparticles with a varying range of size and zeta potential, we show that there is clustering at certain regions of hydrodynamic diameter and zeta potentials that can be classified using k-clustering technique. A cluster boundary was observed around 50 nm, a size known for its optimal response to cells. However, neither size nor zeta potential alone determined the optimal cellular response (e.g., percentage cell survival) induced by such nanoparticles. A complex interplay prevails between size, zeta potential, nature of surface functionalization, and extent of adhesion of the cell to a solid matrix. However, it follows that the ratio of zeta potential to surface area, which scales as the electrical field (by Gaussian law), serves as an appropriate indicator for optimal cellular response. The phase plot spanned by fractional survival and effective electric field (charge density) indicates a positive correlation between mean cell survival and the magnitude of the electric field. The phase plot spanned by fractional survival and effective electric field (charge density) associated with the nanosurface shows a bifurcation behavior. Wide variation of cell survival response is observed at certain critical values of the surface charge density, whereas in other ranges the cellular response is well behaved and more predictable. Existence of phase points near the critical region corresponds to wide fluctuation of nanoparticle-induced response, for small changes in the nanosurface property. Smaller nanoparticles with low zeta potential (e.g., those conjugated with arginine) can have such an attribute (i.e., higher electrical field strength), and eventually they cause more cell death. The study may help in optimal design of nanodrugs.


Subject(s)
Models, Biological , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Neoplasms, Experimental/chemistry , Neoplasms, Experimental/physiopathology , Subcellular Fractions/chemistry , Animals , Cell Line, Tumor , Cell Survival/drug effects , Computer Simulation , Humans
4.
Cancer Nanotechnol ; 2(1-6): 37-47, 2011.
Article in English | MEDLINE | ID: mdl-26069483

ABSTRACT

The conventional chemotherapeutic agents used in the treatment of human malignancies are directed nonspecifically against both malignant and nonmalignant cells, often limiting their efficacy with having serious side effects. Recent development of drug delivery vehicles has opened up the possibility of targeted drug delivery systems with the potential of achieving maximum efficacy with minimal toxicity. The possibility of using a nanomaterial as a combinational drug component is intuitively evident as it would compensate the toxicity level by enhancing drug delivery efficiency. Additionally, cell-specific cytotoxicity (reported earlier by our group) of the nanovehicle itself may potentiate a more effective targeted cell killing. In this paper, we explore the possibility of using gold nanoparticles playing the dual role of an anticancer agent and a carrier of a chemotherapeutic drug. This is demonstrated using vincristine sulfate (VS), salt of an alkaloid often used in the treatment of multiple myeloma (MM), and U266 as a test MM cell line. The drug VS shows the expected G2-M-phase arrest of cells. Notably, bare gold nanoparticle shows arrest of the S phase cells that may be particularly important in case of slow-growing malignancies like MM where most of the cells remain in G1 phase of the cell cycle. The VS conjugated gold retains the activity of both gold nanoparticle and VS leading to a synergistic rise of the apoptotic cell population.

SELECTION OF CITATIONS
SEARCH DETAIL
...