Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 10(10)2021 10 01.
Article in English | MEDLINE | ID: mdl-34685597

ABSTRACT

1,8-cineole, a monoterpenoid is a major component of eucalyptus oil and has been proven to possess numerous beneficial effects in humans. Notably, 1,8-cineole is the primary active ingredient of a clinically approved drug, Soledum® which is being mainly used for the maintenance of sinus and respiratory health. Due to its clinically valuable properties, 1,8-cineole has gained significant scientific interest over the recent years specifically to investigate its anti-inflammatory and antioxidant effects. However, the impact of 1,8-cineole on the modulation of platelet activation, thrombosis and haemostasis was not fully established. Therefore, in this study, we demonstrate the effects of 1,8-cineole on agonists-induced platelet activation, thrombus formation under arterial flow conditions and haemostasis in mice. 1,8-cineole largely inhibits platelet activation stimulated by glycoprotein VI (GPVI) agonists such as collagen and cross-linked collagen-related peptide (CRP-XL), while it displays minimal inhibitory effects on thrombin or ADP-induced platelet aggregation. It inhibited inside-out signalling to integrin αIIbß3 and outside-in signalling triggered by the same integrin as well as granule secretion and intracellular calcium mobilisation in platelets. 1,8-cineole affected thrombus formation on collagen-coated surface under arterial flow conditions and displayed a minimal effect on haemostasis of mice at a lower concentration of 6.25 µM. Notably, 1,8-cineole was found to be non-toxic to platelets up to 50 µM concentration. The investigation on the molecular mechanisms through which 1,8-cineole inhibits platelet function suggests that this compound affects signalling mediated by various molecules such as AKT, Syk, LAT, and cAMP in platelets. Based on these results, we conclude that 1,8-cineole may act as a potential therapeutic agent to control unwarranted platelet reactivity under various pathophysiological settings.


Subject(s)
Blood Platelets/drug effects , Eucalyptol/pharmacology , Hemostasis/drug effects , Platelet Activation/drug effects , Platelet Aggregation/drug effects , Animals , Cells, Cultured , Humans , Mice , Thrombosis/drug therapy
2.
Br J Pharmacol ; 177(4): 912-928, 2020 02.
Article in English | MEDLINE | ID: mdl-31693171

ABSTRACT

BACKGROUND AND PURPOSE: Epidiolex™, a form of highly purified cannabidiol (CBD) derived from Cannabis plants, has demonstrated seizure control activity in patients with Dravet syndrome, without a fully elucidated mechanism of action. We have employed an unbiased approach to investigate this mechanism at a cellular level. EXPERIMENTAL APPROACH: We use a tractable biomedical model organism, Dictyostelium, to identify a protein controlling the effect of CBD and characterize this mechanism. We then translate these results to a Dravet syndrome mouse model and an acute in vitro seizure model. KEY RESULTS: CBD activity is partially dependent upon the mitochondrial glycine cleavage system component, GcvH1 in Dictyostelium, orthologous to the human glycine cleavage system component H protein, which is functionally linked to folate one-carbon metabolism (FOCM). Analysis of FOCM components identified a mechanism for CBD in directly inhibiting methionine synthesis. Analysis of brain tissue from a Dravet syndrome mouse model also showed drastically altered levels of one-carbon components including methionine, and an in vitro rat seizure model showed an elevated level of methionine that is attenuated following CBD treatment. CONCLUSIONS AND IMPLICATIONS: Our results suggest a novel mechanism for CBD in the regulating methionine levels and identify altered one-carbon metabolism in Dravet syndrome and seizure activity.


Subject(s)
Cannabidiol , Dictyostelium , Epilepsy , Lennox Gastaut Syndrome , Animals , Anticonvulsants/therapeutic use , Cannabidiol/therapeutic use , Carbon Cycle , Epilepsy/drug therapy , Humans , Lennox Gastaut Syndrome/drug therapy , Methionine/therapeutic use , Rats
3.
Eur J Pharmacol ; 862: 172627, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31461638

ABSTRACT

Isorhapontigenin is a polyphenolic compound found in Chinese herbs and grapes. It is a methoxylated analogue of a stilbenoid, resveratrol, which is well-known for its various beneficial effects including anti-platelet activity. Isorhapontigenin possesses greater oral bioavailability than resveratrol and has also been identified to possess anti-cancer and anti-inflammatory properties. However, its effects on platelet function have not been reported previously. In this study, we report the effects of isorhapontigenin on the modulation of platelet function. Isorhapontigenin was found to selectively inhibit ADP-induced platelet aggregation with an IC50 of 1.85 µM although it displayed marginal inhibition on platelet aggregation induced by other platelet agonists at 100 µM. However, resveratrol exhibited weaker inhibition on ADP-induced platelet aggregation (IC50 > 100 µM) but inhibited collagen induced platelet aggregation at 50 µM and 100 µM. Isorhapontigenin also inhibited integrin αIIbß3 mediated inside-out and outside-in signalling and dense granule secretion in ADP-induced platelet activation but interestingly, no effect was observed on α-granule secretion. Isorhapontigenin did not exert any cytotoxicity on platelets at the concentrations of up to 100 µM. Furthermore, it did not affect haemostasis in mice at the IC50 concentration (1.85 µM). In addition, the mechanistic studies demonstrated that isorhapontigenin increased cAMP levels and VASP phosphorylation at Ser157 and decreased Akt phosphorylation. This suggests that isorhapontigenin may interfere with cAMP and PI3K signalling pathways that are associated with the P2Y12 receptor. Molecular docking studies emphasised that isorhapontigenin has greater binding affinity to P2Y12 receptor than resveratrol. Our results demonstrate that isorhapontigenin has selective inhibitory effects on ADP-stimulated platelet activation possibly via P2Y12 receptor.


Subject(s)
Blood Platelets/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Stilbenes/pharmacology , Adenosine Diphosphate/pharmacology , Animals , Blood Platelets/metabolism , Drug Evaluation, Preclinical , Female , Healthy Volunteers , Humans , Inhibitory Concentration 50 , Male , Mice , Models, Animal , Molecular Docking Simulation , Platelet Aggregation Inhibitors/therapeutic use , Platelet Function Tests , Platelet Glycoprotein GPIIb-IIIa Complex/antagonists & inhibitors , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Receptors, Purinergic P2Y12/chemistry , Receptors, Purinergic P2Y12/metabolism , Resveratrol/analogs & derivatives , Resveratrol/pharmacology , Signal Transduction/drug effects , Stilbenes/chemistry , Stilbenes/therapeutic use , Thrombosis/drug therapy
4.
Epilepsy Behav ; 70(Pt B): 319-327, 2017 05.
Article in English | MEDLINE | ID: mdl-28190698

ABSTRACT

The isolation and identification of the discrete plant cannabinoids in marijuana revived interest in analyzing historical therapeutic claims made for cannabis in clinical case studies and anecdotes. In particular, sources as old as the 11th and 15th centuries claimed efficacy for crude marijuana extracts in the treatment of convulsive disorders, prompting a particularly active area of preclinical research into the therapeutic potential of plant cannabinoids in epilepsy. Since that time, a large body of literature has accumulated describing the effects of several of the >100 individual plant cannabinoids in preclinical models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. We surveyed the literature for relevant reports of such plant cannabinoid effects and critically reviewed their findings. We found that acute CB1R agonism in simple models of acute seizures in rodents typically produces anti-convulsant effects whereas CB1R antagonists exert converse effects in the same models. However, when the effects of such ligands are examined in more complex models of epilepsy, epileptogenesis and neuroprotection, a less simplistic narrative emerges. Here, the complex interactions between (i) brain regions involved in a given model, (ii) relative contributions of endocannabinoid signaling to modulation of synaptic transmission in such areas, (iii) multi-target effects, (iv) cannabinoid type 1 and type 2 receptor signaling interactions and, (v) timing, (vi) duration and (vii) localization of ligand administration suggest that there is both anti-epileptic therapeutic potential and a pro-epileptic risk in up- and down-regulation of endocannabinoid signaling in the central nervous system. Factors such receptor desensitization and specific pharmacology of ligands used (e.g. full vs partial agonists and neutral antagonists vs inverse agonists) also appear to play an important role in the effects reported. Furthermore, the effects of several plant cannabinoids, most notably cannabidiol (CBD) and cannabidavarin (CBDV), in models of seizures, epilepsy, epileptogenesis, and neuroprotection are less ambiguous, and consistent with reports of therapeutically beneficial effects of these compounds in clinical studies. However, continued paucity of firm information regarding the therapeutic molecular mechanism of CBD/CBDV highlights the continued need for research in this area in order to identify as yet under-exploited targets for drug development and raise our understanding of treatment-resistant epilepsies. The recent reporting of positive results for cannabidiol treatment in two Phase III clinical trials in treatment-resistant epilepsies provides pivotal evidence of clinical efficacy for one plant cannabinoid in epilepsy. Moreover, risks and/or benefits associated with the use of unlicensed Δ9-THC containing marijuana extracts in pediatric epilepsies remain poorly understood. Therefore, in light of these paradigm-changing clinical events, the present review's findings aim to drive future drug development for newly-identified targets and indications, identify important limitations of animal models in the investigation of plant cannabinoid effects in the epilepsies, and focuses future research in this area on specific, unanswered questions regarding the complexities of endocannabinoid signaling in epilepsy. This article is part of a Special Issue titled Cannabinoids and Epilepsy.


Subject(s)
Anticonvulsants/therapeutic use , Cannabinoids/therapeutic use , Disease Models, Animal , Epilepsy/drug therapy , Neuroprotective Agents/therapeutic use , Seizures/drug therapy , Animals , Brain/drug effects , Brain/physiopathology , Cannabidiol/therapeutic use , Cannabis , Dronabinol/therapeutic use , Drug Combinations , Epilepsy/physiopathology , Humans , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Seizures/physiopathology
5.
Vet Q ; 33(2): 68-81, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23802762

ABSTRACT

Bovine herpesvirus-1 (BHV-1) is known to cause several diseases worldwide. It is a double-stranded DNA virus consisting of 33 structural proteins out of which 13 are associated with the envelope. Based on genomic analysis and viral peptide patterns, BHV-1 virus can be divided into several subtypes like BHV-1.1, BHV-1.2, and BHV-1.3. However, all subtypes are antigenically similar. The symptoms of the related diseases are mainly non-life-threatening but have a rather wide host range that limits animal trade. The different modes of transmission as unique feature of this virus and the tendency to cause infection in the early age with latency development in trigeminal and sacral ganglion cause huge economic losses around the world. The virus also affects endangered bovine species like mithun (Bos frontalis) and yak (Poephagus grunniens). The disease can be diagnosed by using conventional procedures (like cell culture, immune-histopathology, and enzyme-linked immunosorbent assay (ELISA)) as well as highly sensitive modern techniques (like nested PCR and southern hybridization) with the virus neutralization test regarded as gold standard. With the currently available diagnostic tests it is not possible to identify animals which have a latent BHV-1 infection. Different types of modern and conventional vaccines are available for immunoprophylaxis. Inactivated vaccines are not as efficacious as modified live virus (MLV) vaccines. Marker vaccines allow the distinction between vaccinated and naturally infected animals. In this review the present status of BHV-1 around the world will be addressed besides the current knowledge with regard to its biology, epidemiology, diagnosis, and prophylaxis.


Subject(s)
Herpesvirus 1, Bovine/physiology , Infectious Bovine Rhinotracheitis , Viral Vaccines/therapeutic use , Animals , Cattle , Herpesvirus 1, Bovine/classification , Herpesvirus 1, Bovine/immunology , Infectious Bovine Rhinotracheitis/diagnosis , Infectious Bovine Rhinotracheitis/epidemiology , Infectious Bovine Rhinotracheitis/etiology , Infectious Bovine Rhinotracheitis/prevention & control , Polymerase Chain Reaction/veterinary , Serologic Tests/veterinary , Viral Load/veterinary
6.
Asian Pac J Trop Med ; 6(4): 315-9, 2013 Apr 13.
Article in English | MEDLINE | ID: mdl-23608335

ABSTRACT

OBJECTIVE: To evaluate the antimicrobial efficacy of berberine, a plant alkaloid. METHODS: Five multi-drug resistant (MDR) STEC/EPEC and five MDR ETEC isolates from yaks with haemorrhagic diarrhoea were selected for the study. Antibacterial activity of berberine was evaluated by broth dilution and disc diffusion methods. The binding kinetics of berberine to DNA and protein was also enumerated. RESULTS: For both categories of enterovirulent Escherichia coli (E. coli) isolates, berberine displayed the antibacterial effect in a dose dependent manner. The MIC(50) of berberine chloride for STEC/EPEC isolates varied from 2.07 µM to 3.6 µM with a mean of (2.95 ± 0.33) µM where as for ETEC strains it varied from 1.75 to 1.96 µM with a mean of (1.87 ± 0.03) µM. Berberine bind more tightly with double helix DNA with Bmax and Kd of (24.68±2.62) and (357.8±57.8), respectively. Berberine reacted with protein in comparatively loose manner with Bmax and Kd of (18.9±3.83) and (286.2±113.6), respectively. CONCLUSIONS: The results indicate clearly that berberine may serve as a good antibacterial against multi drug resistant E. coli.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Berberine/therapeutic use , Cattle Diseases/drug therapy , Diarrhea/drug therapy , Escherichia coli Infections/drug therapy , Animals , Berberine/metabolism , Cattle , DNA, Bacterial/metabolism , Diarrhea/veterinary , Drug Resistance, Multiple, Bacterial , Enteropathogenic Escherichia coli , Enterotoxigenic Escherichia coli , Escherichia coli Infections/veterinary , Microbial Sensitivity Tests , Protein Binding , Shiga-Toxigenic Escherichia coli
SELECTION OF CITATIONS
SEARCH DETAIL
...