Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS PharmSciTech ; 25(5): 97, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710894

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the highly fatal types of cancer with high mortality/incidence. Considering the crucial role of vascular endothelial growth factor (VEGF) in PDAC progression, its inhibition can be a viable strategy for the treatment. Pazopanib, a second-generation VEGF inhibitor, is approved for the treatment of various oncological conditions. However, due to associated limitations like low oral bioavailability (14-39%), high inter/intra-subject variability, stability issues, etc., high doses (800 mg) are required, which further lead to non-specific toxicities and also contribute toward cancer resistance. Thus, to overcome these challenges, pazopanib-loaded PEGylated nanoliposomes were developed and evaluated against pancreatic cancer cell lines. The nanoliposomes were prepared by thin-film hydration method, followed by characterization and stability studies. This QbD-enabled process design successfully led to the development of a suitable pazopanib liposomal formulation with desirable properties. The % entrapment of PZP-loaded non-PEGylated and PEGylated nanoliposomes was found to be 75.2% and 84.9%, respectively, whereas their particle size was found to be 129.7 nm and 182.0 nm, respectively. The developed liposomal formulations exhibited a prolonged release and showed desirable physicochemical properties. Furthermore, these liposomal formulations were also assessed for in vitro cell lines, such as cell cytotoxicity assay and cell uptake. These studies confirm the effectiveness of developed liposomal formulations against pancreatic cancer cell lines. The outcomes of this work provide encouraging results and a way forward to thoroughly investigate its potential for PDAC treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Indazoles , Liposomes , Nanoparticles , Pancreatic Neoplasms , Particle Size , Pyrimidines , Sulfonamides , Indazoles/administration & dosage , Indazoles/pharmacology , Humans , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Sulfonamides/chemistry , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Drug Liberation , Chemistry, Pharmaceutical/methods
2.
Drug Deliv Transl Res ; 12(6): 1521-1539, 2022 06.
Article in English | MEDLINE | ID: mdl-34505271

ABSTRACT

The key objective of the current research was to fabricate and optimize Capecitabine (Cap)-loaded [poly(lactic-co-glycolic acid)] PLGA-based nanoparticles (NPs) by enabling quality by design (QbD) approach for enhancing antitumor activity by promising delivery of the drug at the colonic site. The current research was based on fabricating PLGA-based nanoparticles along with Eudragit S100 as enteric polymer employing solvent shifting method followed by optimization using QbD approach. This approach was found to be useful for understanding the multiple factors and their interaction influencing the product by utilizing Design of Experiment (DOE). Box-Behnken design (BBD) was adopted to achieve the required critical quality attributes (CQAs), i.e., minimizing particle size, maximizing entrapment efficiency, and minimizing PDI value. The optimized nanoparticles were lyophilized and characterized by FT-IR, DSC, TEM, DLS, MTT assay using HT-29 cell lines, and in vivo pharmacokinetic studies. The optimized PLGA-based nanoparticles were found to possess average particle size, PDI, zeta potential, and entrapment efficiency of 195 nm, 0.214, -6.65 mV, and 65%, respectively. TEM analysis revealed the spherical nature of nanoparticles. The FT-IR and DSC studies revealed no interaction. The bioavailability of Cap-loaded nanoparticles was found to be two fold increased than the pure drug, and also, it exhibited significantly more cytotoxic to tumor cells as compared to pure drug as confirmed by MTT assay. The optimized PLGA-based nanoparticles found to possess enhanced bioavailability and significantly more cytotoxic potential as compared to pure drug.


Subject(s)
Antineoplastic Agents , Nanoparticles , Antineoplastic Agents/pharmacology , Capecitabine , Drug Carriers , Drug Liberation , Humans , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Solvents , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...