Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(11): 4839-4854, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38433436

ABSTRACT

A series of Ru(II)-acetylide complexes (Ru1, Ru2, and Ru1m) with alkynyl-functionalized borondipyrromethene (BODIPY) conjugates were designed by varying the position of the linker that connects the BODIPY unit to the Ru(II) metal center through acetylide linkage at either the 2-(Ru1) and 2,6-(Ru2) or the meso-phenyl (Ru1m) position of the BODIPY scaffold. The Ru(II) organometallic complexes were characterized by various spectroscopic methods, including nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, CHN, and high-resolution mass spectrometry (HRMS) analyses. The Ru(II)-BODIPY conjugates exhibit fascinating electrochemical and photophysical properties. All BODIPY-Ru(II) complexes exhibit strong absorption (εmax = 29,000-72,000 M-1 cm-1) in the visible region (λmax = 502-709 nm). Fluorescence is almost quenched for Ru1 and Ru2, whereas Ru1m shows the residual fluorescence of the corresponding BODIPY core at 517 nm. The application of the BODIPY-Ru(II) dyads as nonporphyrin-based triplet photosensitizers was explored by a method involving the singlet oxygen (1O2)-mediated photo-oxidation of diphenylisobenzofuran. Effective π-conjugation between the BODIPY chromophore and Ru(II) center in the case of Ru1 and Ru2 was found to be necessary to improve intersystem crossing (ISC) and hence the 1O2-sensitizing ability. In addition, electrochemical studies indicate electronic interplay between the metal center and the redox-active BODIPY in the BODIPY-Ru(II) dyads.

2.
Chemphyschem ; 23(23): e202200361, 2022 12 05.
Article in English | MEDLINE | ID: mdl-35881033

ABSTRACT

The π-conjugated supramolecular polymers (SMP) have gained vast popularity in materials chemistry and biomedicine due to their spectacular self-assembling behaviour. A detailed account of the electronic structure and bonding through quantum theory of atoms-in-molecules, non-covalent interactions, and energy decomposition analysis (EDA) in the oligomers of perylene, perylene diimide (PDI), and thionated-PDI (t-PDI) is presented. The oligomers of all three molecules show a slip angle of θ≈62° thus forming H-aggregates. The stacking pattern in perylene oligomers prefers a slip-stacked brick-layer order, while the bulkier PDI and t-PDI prefer a parallel step-wise pattern in their oligomers. Successive addition of monomers leads to a consequent rise in the association energy, although to a much greater extent in PDI and t-PDI than in perylene. While the major contribution to this association energy comes from the dispersion interactions in all three systems, the steric interactions in t-PDI quench the cooperativity in its SMP formation. A detailed analysis of the non-covalent interactions reveals the presence of π-π, π-hole⋅⋅⋅O=C, and π-hole⋅⋅⋅S=C electrostatic interactions playing a crucial role in the self-assembly process, which can be further implemented on developing force field-based methods for understanding the self-assembling mechanism in higher degree of oligomers.


Subject(s)
Perylene , Perylene/chemistry , Imides/chemistry , Quantum Theory
3.
Mini Rev Med Chem ; 22(16): 2102-2123, 2022.
Article in English | MEDLINE | ID: mdl-35105287

ABSTRACT

The SARS-CoV-2 enters the human airways and comes into contact with the mucous membranes lining the mouth, nose, and eyes. The virus enters the healthy cells and uses cell machinery to make several copies itself. Critically ill patients infected with SARS-CoV-2 may have damaged lungs, air sacs, lining, and walls. Since COVID-19 causes cytokine storm, it damages the alveolar cells of the lungs and fills them with fluid, making it harder to exchange oxygen and carbon dioxide. The SARS-CoV-2 infection causes a range of complications, including mild to critical breathing difficulties. It has been observed that older people suffering from health conditions like cardiomyopathies, nephropathies, metabolic syndrome, and diabetes instigate severe symptoms. Many people who died due to COVID-19 had impaired metabolic health [IMH], characterized by hypertension, dyslipidemia, and hyperglycemia, i.e., diabetes, cardiovascular system, and renal diseases, making their retrieval challenging. Jeopardy stresses for increased mortality from COVID-19 include older age, COPD, ischemic heart disease, diabetes mellitus, and immunosuppression. However, no targeted therapies are available as of now. Almost two-thirds of diagnosed coronavirus patients had cardiovascular diseases and diabetes, out of which 37% were under 60. The NHS audit revealed that with a higher expression of ACE-2 receptors, viral particles could easily bind their protein spikes and get inside the cells, finally causing COVID-19 infection. Hence, people with IMH are more prone to COVID-19 and, ultimately, comorbidities. This review provides enormous information about tissue [lungs, heart, and kidneys] damage, pathophysiological changes, and impaired metabolic health of SARS-CoV-2 infected patients. Moreover, it also designates the possible therapeutic targets of COVID-19 and drugs which can be used against these targets.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus , Aged , Angiotensin-Converting Enzyme 2 , Animals , Diabetes Mellitus/drug therapy , Humans , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2
4.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34360945

ABSTRACT

Mitochondria are vital intracellular organelles that play an important role in regulating various intracellular events such as metabolism, bioenergetics, cell death (apoptosis), and innate immune signaling. Mitochondrial fission, fusion, and membrane potential play a central role in maintaining mitochondrial dynamics and the overall shape of mitochondria. Viruses change the dynamics of the mitochondria by altering the mitochondrial processes/functions, such as autophagy, mitophagy, and enzymes involved in metabolism. In addition, viruses decrease the supply of energy to the mitochondria in the form of ATP, causing viruses to create cellular stress by generating ROS in mitochondria to instigate viral proliferation, a process which causes both intra- and extra-mitochondrial damage. SARS-COV2 propagates through altering or changing various pathways, such as autophagy, UPR stress, MPTP and NLRP3 inflammasome. Thus, these pathways act as potential targets for viruses to facilitate their proliferation. Autophagy plays an essential role in SARS-COV2-mediated COVID-19 and modulates autophagy by using various drugs that act on potential targets of the virus to inhibit and treat viral infection. Modulated autophagy inhibits coronavirus replication; thus, it becomes a promising target for anti-coronaviral therapy. This review gives immense knowledge about the infections, mitochondrial modulations, and therapeutic targets of viruses.


Subject(s)
Autophagy , COVID-19/metabolism , Mitochondria/metabolism , Mitochondria/virology , Animals , Autophagy/drug effects , Humans , Mitochondrial Dynamics/drug effects , Mitophagy/drug effects , Virus Diseases/drug therapy , Virus Diseases/metabolism , COVID-19 Drug Treatment
5.
Chem Asian J ; 15(20): 3304-3313, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-32790947

ABSTRACT

A series of organometallic complexes [Cl(dppe)2 Ru-C≡C-(3-R-C4 H2 S)-C≡C-Ru(dppe)2 Cl] (3-R-C4 H2 S=3-substituted thienyl moiety; R=-H, -C2 H5 , -C3 H7 , -C4 H9 , -C6 H13 , -OMe, -CN in 5 a-5 g respectively) have been synthesized by systematic variation of 3-substituents at the thienylethynyl bridging unit. The diruthenum(II) wire-like complexes (5 a-5 g) have been achieved by the reaction of thienylethynyl bridging units, HC≡C-(3-R-C4 H2 S)-C≡CH (4 a-4 g) with cis-[Ru(dppe)2 Cl2 ]. The wire-like diruthenium(II) complexes undergo two consecutive electrochemical oxidation processes in the potential range of 0.0 - 0.8 V. Interestingly, the wave separation between the two redox waves is greatly influenced by the substituents at the 3-position of the thienylethynyl. Thus, the substitution on 3-position of the thienylethynyl bridging unit plays a pivotal role for tuning the electronic properties. To understand the electronic behavior, density functional theory (DFT) calculations of the selected diruthenium wire-like complexes (5 a-5 e) with different alkyl appendages are performed. The theoretical data demonstrate that incorporation of alkyl groups to the thienylethynyl entity leaves unsymmetrical spin densities, thus affecting the electronic properties. The voltammetric features of the other two Ru(II) alkynyl complexes 5 f and 5 g (with -OMe and -CN group respectively) show an apparent dependence on the electronic properties. The electronic properties in the redox conjugate, (5 a+ ) with Kc of 3.9×106 are further examined by UV-Vis-NIR and FTIR studies, showing optical responses in NIR region along with changes in "-Ru-C≡C-" vibrational stretching frequency. The origin of the observed electronic transition has been assigned based on time-dependent DFT (TDDFT) calculations.

6.
Dalton Trans ; 48(6): 2108-2117, 2019 Feb 05.
Article in English | MEDLINE | ID: mdl-30667002

ABSTRACT

A water-soluble dilithium salt BODIPY derivative (LiBDP) with appended dicarboxylate pseudo-crown ether [NO4] coordinating sites has been designed, synthesized and characterized successfully for the selective and sensitive recognition of Cd2+ in aqueous media. The chemosensor exhibits a remarkable increase in fluorescence intensity as well as a distinct color change upon the addition of Cd2+ over other environmentally and biologically relevant metal ions in H2O. The fluorometric response of LiBDP is attributed to the metal chelation-enhanced fluorescence (MCHEF) effect which has been confirmed by a strong association constant of 2.57 ± 1.06 × 105 M-1 and Job's plot, indicating 1 : 1 binding stoichiometry between LiBDP and Cd2+. Frontier molecular orbital analysis (obtained from DFT studies) also illustrates the turn-on fluorescence of the probe by blocking photoinduced electron transfer (PET) after coordination to Cd2+. The probe can detect Cd2+ in a competitive environment up to a submicromolar level in a biologically significant pH range. The sensor is proved to be reversible and reusable by the alternative addition of Cd2+ followed by S2-. The OFF/ON/OFF sensing behavior is utilized to construct an INHIBIT molecular logic gate based on the two inputs of Cd2+ and S2- and a fluorescence intensity at 512 nm as an output. The test paper experiment demonstrates the practical utility of LiBDP to monitor Cd2+ in an aqueous sample. Finally, the sensing probe was utilized to monitor Cd2+ in living cells.

7.
Inorg Chem ; 58(2): 1155-1166, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30614701

ABSTRACT

A series of heterobimetallic wire-like organometallic complexes [( tpy-C6H4-R)(PPh3)2Ru-C≡C-Fc]+ ( tpy-C6H4-R = 4'-(aryl)-2,2':6',2''-terpyridyl, Fc = [(η5-Cp)2Fe], R = -H, -Me, -F, -NMe2 in complexes 5-8, respectively) featuring ferrocenyl and 4'-(aryl)-2,2':6',2''-terpyridyl ruthenium(II) complexes as redox active metal termini, have been synthesized. Various spectroscopic tools, such as multinuclear NMR, IR spectra, HRMS, CHN analyses, and single crystal X-ray crystallography have been utilized to characterize the heterobimetallic complexes. The electrochemical and UV-vis-NIR spectroscopic studies have been investigated to evaluate the electronic delocalization across the molecular backbones of the Ru(II)-Fe(II) heterobinuclear organometallic dyads. Electrochemical studies reveal two well-separated reversible redox waves as a result of successive oxidation of the ferrocenyl and Ru(II) redox centers. The spin density distribution analyses reveal that the initial oxidation process is associated with the Fe(II)/Fe(III) couple followed by one electron oxidation of the ruthenium(II) center. The high Kc value (0.11-1.73 × 1012) and intense NIR absorption, with molar absorption coefficient (in the order of 103 M-1 cm-1) for the RuIIFeIII mixed-valence species, signify strong electronic communication between the two metal termini. The electronic coupling constant ( Hab) has been estimated to be 492 and 444 cm-1 for the structurally characterized complexes 6 and 7, respectively. The redox and NIR absorption features indicate that the mixed-valence system of the heterobinuclear dyads belongs to a Robin and Day "class II" system.

8.
Dalton Trans ; 47(29): 9877-9888, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-29998273

ABSTRACT

A series of arylene-vinylene π-conjugated terpyridyl ruthenium(ii) complexes, [Ru(PPh3)2Cl(tpy-C6H4-CH[double bond, length as m-dash]CH-Ar)][PF6] (1-4; tpy = 2,2':6',2''-terpyridyl, where Ar = phenyl, tolyl, 1-naphthyl and 9-anthracenyl as substituents at the 4' position of tpy), have been synthesized and characterized by multinuclear NMR, IR, HRMS and single crystal X-ray crystallography. The influence of the electronic nature of arylene groups on their photophysical and electrochemical properties has been investigated to understand the electronic interaction between the metal-organic redox centers. Furthermore, a σ-donor phenylacetylide group has been incorporated to accomplish [Ph-C[triple bond, length as m-dash]C-Ru(PPh3)2(tpy-C6H4-CH[double bond, length as m-dash]CH-Ar)][PF6] (5-8) complexes by the substitution of a coordinated chloride ligand and to investigate the change in their redox and photophysical properties. DFT studies have been performed to gain an insight into their electronic properties by determining the HOMO-LUMO energy levels and frontier molecular orbitals of all the synthesized Ru(ii) complexes.

9.
Dalton Trans ; 47(40): 14304-14317, 2018 Oct 16.
Article in English | MEDLINE | ID: mdl-29967914

ABSTRACT

Organometallic molecular wires with π-conjugation along their molecular backbones are of considerable interest for application in molecular-scale electronics. In this regard, thienylethynyl-based π-conjugated oligomers of three, five and seven thienylethynyl units with -C[triple bond, length as m-dash]C-H termini have been successfully synthesized through stepwise Pd(0)/Cu(i)-catalyzed Sonogashira coupling. The corresponding highly soluble diruthenium(ii) diacetylide complexes (O1-Ru2, O3-Ru2, O5-Ru2 and O7-Ru2, respectively) have been prepared by the reaction of cis-Ru(dppe)2Cl2 and NaPF6 in DCM with the corresponding rigid rod-like thienylethynyl oligomers with one, three, five and seven thienylethynyl π-conjugated segments containing alkynyl termini (O1, O3, O5 and O7). These Ru(ii)-Cl capped diacetylide complexes have been further functionalized by incorporating a phenylacetynyl moiety to afford [Ru(ii)-C[triple bond, length as m-dash]C-Ph]-capped diacetylide organometallic wires (O1-Ru2-Ph, O3-Ru2-Ph, O5-Ru2-Ph and O7-Ru2-Ph). The photophysical properties of the highly soluble thienylethynyl-based oligomers and Ru(ii)-organometallic wires have been explored to understand their electronic properties. Electrochemical studies of the binuclear ruthenium(ii)-alkynyl complexes showed highly interesting results, revealing long-range electrochemical communication between the two remote Ru(ii) termini connected even with five and seven thienylethynyl units. DFT computational studies further support the long range electrochemical communication between the redox active metal termini through heavy participation of the thienylethynyl bridge in the corresponding mono-oxidized mixed valence species of the organometallic wire-like complexes.

10.
J Org Chem ; 82(20): 10989-10996, 2017 10 20.
Article in English | MEDLINE | ID: mdl-28901761

ABSTRACT

A rhodium catalyzed direct regioselective oxidative annulation by double C-H activation is described to synthesize highly substituted quinolones from pyridones. The reaction proceeds at mild conditions with broad scope and wide functional group tolerance. These novel quinolones were explored to recognize nitroaromatic compounds.

11.
Dalton Trans ; 46(18): 5918-5929, 2017 May 09.
Article in English | MEDLINE | ID: mdl-28406507

ABSTRACT

Fluorenyl-alkynyl based π-conjugated rod-shaped oligomers bearing different central aromatic moieties and functionalizable di-alkynyl termini, such as H-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-H (OH1), H-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Btz-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-H (OH2) and H-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Btd-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-H (OH3) where Fl = 9,9-dioctylfluorene, Btz = N-hexylbenzotriazole, and Btd = benzothiadiazole, were successfully synthesized by a Pd(0) catalyzed Stille coupling protocol. Electron withdrawing benzothiadiazole and benzotriazole as strong to moderate acceptors and fluorene as the donor have been incorporated to adjust the Donor-Acceptor (D-A) strength for fine-tuning the bandgap (Eg) as well as the emission wavelength. The corresponding digold(i) σ-complexes (PPh3)Au-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Au(PPh3) (OM1), (PPh3)Au-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Btz-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Au(PPh3) (OM2) and (PPh3)Au-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Btd-[triple bond, length as m-dash]-Fl-[triple bond, length as m-dash]-Au(PPh3) (OM3) have also been prepared by a reaction of Au(PPh3)Cl and methanolic NaOMe in DCM with the corresponding alkynyl functionalized oligomers to take advantage of the heavy-atom effect on their emissive properties. The synthesized rod-shaped π-conjugated fluorene based oligomers and their binuclear Au(i) σ-complexes have been unambiguously characterized by various spectroscopic tools such as FTIR and multinuclear NMR as well as MALDI-TOF and CHN analyses. The absorption and emission spectral studies exhibited a progressive red shift with increasing the electron withdrawing character of the central aromatic unit. The rod-like oligomers having alkynyl termini and the corresponding digold(i) complexes are found to be blue, cyan and yellow emissive, demonstrating the fine-tuning of the emission wavelength. Most importantly, the fluorene based π-conjugated yellow light emitters OH3 and OM3 are successfully achieved by varying the donor/acceptor moiety to the fluorenyl-alkynyl backbone. The digold(i) diacetylide organometallic wires exhibit phosphorescence at 77 K in degassed CH2Cl2 due to the efficient intersystem crossing from the S1 to the T1 excited state as induced by heavy atoms.

12.
Chemistry ; 19(28): 9186-97, 2013 Jul 08.
Article in English | MEDLINE | ID: mdl-23733316

ABSTRACT

With the aim of accessing colloidally stable, fiberlike, π-conjugated nanostructures of controlled length, we have studied the solution self-assembly of two asymmetric crystalline-coil, regioregular poly(3-hexylthiophene)-b-poly(2-vinylpyridine) (P3HT-b-P2VP) diblock copolymers, P3HT23-b-P2VP115 (block ratio=1:5) and P3HT44-b-P2VP115 (block ratio=ca. 1:3). The self-assembly studies were performed under a variety of solvent conditions that were selective for the P2VP block. The block copolymers were prepared by using Cu-catalyzed azide-alkyne cycloaddition reactions of azide-terminated P2VP and alkyne end-functionalized P3HT homopolymers. When the block copolymers were self-assembled in a solution of a 50% (v/v) mixture of THF (a good solvent for both blocks) and an alcohol (a selective solvent for the P2VP block) by means of the slow evaporation of the common solvent; fiberlike micelles with a P3HT core and a P2VP corona were observed by transmission electron microscopy (TEM). The average lengths of the micelles were found to increase as the length of the hydrocarbon chain increased in the P2VP-selective alcoholic solvent (MeOH3 µm) fiberlike micelles were prepared by the dialysis of solutions of the block copolymers in THF against iPrOH. Furthermore the widths of the fibers were dependent on the degree of polymerization of the chain-extended P3HT blocks. The crystallinity and π-conjugated nature of the P3HT core in the fiberlike micelles was confirmed by a combination of UV/Vis spectroscopy, photoluminescence (PL) measurements, and wide-angle X-ray scattering (WAXS). Intense sonication (iPrOH, 1 h, 0 °C) of the fiberlike micelles formed by P3HT23-b-P2VP115 resulted in small (ca. 25 nm long) stublike fragments that were subsequently used as initiators in seeded growth experiments. Addition of P3HT23-b-P2VP115 unimers to the seeds allowed the preparation of fiberlike micelles with narrow length distributions (L(w)/L(n) < 1.11) and lengths from about 100-300 nm, that were dependent on the unimer-to-seed micelle ratio.

13.
J Am Chem Soc ; 135(7): 2455-8, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23336266

ABSTRACT

The use of ionic self-assembly, a facile non-covalent approach, to access non-conventional block copolymer morphologies, including tetragonal and helical structures, from a combination of polyferrocenylsilane diblock copolymer polyelectrolytes and AOT-based surfactants, is described.

14.
Chem Commun (Camb) ; 48(7): 1060-2, 2012 Jan 25.
Article in English | MEDLINE | ID: mdl-22158853

ABSTRACT

Cyclopentadiene and 1,3-cyclohexadiene are readily polymerised by [LAu][X]. With specific ancillary ligands polymerisation was suppressed and a molecular species involving an Au(I) cation η(2)-bonding CpH was isolated and whose structure was probed in both the solid state and in solution.

15.
Chemistry ; 18(2): 517-25, 2012 Jan 09.
Article in English | MEDLINE | ID: mdl-22162204

ABSTRACT

We demonstrate the synthesis and characterization of star-shaped crystalline-coil block copolymers with four arms consisting of an inner block of poly(ethylene oxide) and an outer semicrystalline compartment of poly(ferrocenyldimethylsilane), [PEO(50) -b-PFDMS(35)](4). The materials were synthesized by transition-metal-catalyzed ring-opening polymerization of dimethylsila[1]ferrocenophane in the presence of silane-functionalized four-arm PEO stars as macroinitiators and they exhibited a moderate polydispersity (PDI≅1.4). Self-assembly in mixtures of THF and different alcohols as selective solvents for the PEO block resulted in the formation of semicrystalline vesicles (ethanol, 1-butanol) or large, rather ill-defined, spherical structures (methanol). Further, both the rate of addition of the selective co-solvent and the overall solvent/non-solvent ratio drastically affected the size and stability of the self-assembled particles. We could also show that a photoacid generator, as a model for an active substance, can be encapsulated and the UV-induced generation of HCl resulted in a straightforward degradation of the organometallic vesicles.


Subject(s)
Ferrous Compounds/chemistry , Polyethylene Glycols/chemistry , Silanes/chemistry , Crystallization , Ferrous Compounds/chemical synthesis , Polyethylene Glycols/chemical synthesis , Polymerization , Silanes/chemical synthesis
17.
J Am Chem Soc ; 133(23): 8842-5, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21561102

ABSTRACT

Solution self-assembly of the regioregular polythiophene-based block copolymer poly(3-hexylthiophene)-b-poly(dimethylsiloxane) yields cylindrical micelles with a crystalline P3HT core. Monodisperse nanocylinders of controlled length have been prepared via crystallization-driven self-assembly using seed micelles as initiators.

18.
Chemistry ; 16(10): 3240-50, 2010 Mar 08.
Article in English | MEDLINE | ID: mdl-20162650

ABSTRACT

Phosphorus-bridged strained [1]ferrocenophanes [Fe{(eta-C(5)H(4))(2)P(CH(2)CMe(3))}] (2) and [Fe{(eta-C(5)H(4))(2)P(CH(2)SiMe(3))}] (3) with neopentyl and (trimethylsilyl)methyl substituents on phosphorus, respectively, have been synthesized and characterized. Photocontrolled living anionic ring-opening polymerization (ROP) of the known phosphorus-bridged [1]ferrocenophane [Fe{(eta-C(5)H(4))(2)P(CMe(3))}] (1) and the new monomers 2 and 3, initiated by Na[C(5)H(5)] in THF at 5 degrees C, yielded well-defined polyferrocenylphosphines (PFPs), [Fe{(eta-C(5)H(4))(2)PR}](n) (R=CMe(3) (4), CH(2)CMe(3) (5), and CH(2)SiMe(3) (6)), with controlled molecular weights (up to ca. 60 x 10(3) Da) and narrow molecular weight distributions. The PFPs 4-6 were characterized by multinuclear NMR spectroscopy, DSC, and by GPC analysis of the corresponding poly(ferrocenylphosphine sulfides) obtained by sulfurization of the phosphorus(III) centers. The living nature of the photocontrolled anionic ROP allowed the synthesis of well-defined all-organometallic PFP-b-PFS(F) (7a and 7b) (PFS(F)=polyferrocenylmethyl(3,3,3,-trifluoropropyl)silane) diblock copolymers through sequential monomer addition. TEM studies of the thin films of the diblock copolymer 7b showed microphase separation to form cylindrical PFS(F) domains in a PFP matrix.

19.
Chemistry ; 16(8): 2574-85, 2010 Feb 22.
Article in English | MEDLINE | ID: mdl-20077542

ABSTRACT

The complete sequence of reactions in the base-promoted reduction of [{Ru(II)(CO)(3)Cl(2)}(2)] to [Ru(I) (2)(CO)(4)](2+) has been unraveled. Several mu-OH, mu:kappa(2)-CO(2)H-bridged diruthenium(II) complexes have been synthesized; they are the direct results of the nucleophilic activation of metal-coordinated carbonyls by hydroxides. The isolated compounds are [Ru(2)(CO)(4)(mu:kappa(2)-C,O-CO(2)H)(2)(mu-OH)(NP(F)-Am)(2)][PF(6)] (1; NP(F)-Am=2-amino-5,7-trifluoromethyl-1,8-naphthyridine) and [Ru(2)(CO)(4)(mu:kappa(2)-C,O-CO(2)H)(mu-OH)(NP-Me(2))(2)][BF(4)](2) (2), secured by the applications of naphthyridine derivatives. In the absence of any capping ligand, a tetranuclear complex [Ru(4)(CO)(8)(H(2)O)(2)(mu(3)-OH)(2)(mu:kappa(2)-C,O-CO(2)H)(4)][CF(3)SO(3)](2) (3) is isolated. The bridging hydroxido ligand in 1 is readily replaced by a pi-donor chlorido ligand, which results in [Ru(2)(CO)(4)(mu:kappa(2)-C,O-CO(2)H)(2)(mu-Cl)(NP-PhOMe)(2)][BF(4)] (4). The production of [Ru(2)(CO)(4)](2+) has been attributed to the thermally induced decarboxylation of a bis(hydroxycarbonyl)-diruthenium(II) complex to a dihydrido-diruthenium(II) species, followed by dinuclear reductive elimination of molecular hydrogen with the concomitant formation of the Ru(I)--Ru(I) single bond. This work was originally instituted to find a reliable synthetic protocol for the [Ru(2)(CO)(4)(CH(3)CN)(6)](2+) precursor. It is herein prescribed that at least four equivalents of base, complete removal of chlorido ligands by Tl(I) salts, and heating at reflux in acetonitrile for a period of four hours are the conditions for the optimal conversion. Premature quenching of the reaction resulted in the isolation of a trinuclear Ru(I) (2)Ru(II) complex [{Ru(NP-Am)(2)(CO)}{Ru(2)(NP-Am)(2)(CO)(2)(mu-CO)(2)}(mu(3):kappa(3)-C,O,O'-CO(2))][BF(4)](2) (6). These unprecedented diruthenium compounds are the dinuclear congeners of the water-gas shift (WGS) intermediates. The possibility of a dinuclear pathway eliminates the inherent contradiction of pH demands in the WGS catalytic cycle in an alkaline medium. A cooperative binuclear elimination could be a viable route for hydrogen production in WGS chemistry.

20.
Chem Commun (Camb) ; (22): 2511-3, 2008 Jun 14.
Article in English | MEDLINE | ID: mdl-18506227

ABSTRACT

Oxidative additions of dichloromethanes to a diiridium(i) core, bridged by 2-ferrocenyl-1,8-naphthyridines (NP-Fc), provide an iridium(II) dimer, [IrCl2(CO)2(eta 1-NP-Fc)]2, featuring an unsupported Ir-Ir single bond (2.7121(8) A).

SELECTION OF CITATIONS
SEARCH DETAIL
...