Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Appl Bio Mater ; 7(4): 2354-2366, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38481091

ABSTRACT

This work reports an "all-in-one" theranostic upconversion luminescence (UCL) system having potential for both diagnostic and therapeutic applications. Despite considerable efforts in designing upconversion nanoparticles (UCNPs) for multimodal imaging and tumor therapy, there are few reports investigating dual modality SPECT/optical imaging for theranostics. Especially, research focusing on in vivo biodistribution studies of intrinsically radiolabeled UCNPs after intravenous injection is of utmost importance for the potential clinical translation of such formulations. Here, we utilized the gamma emission from 169Er and 171Er radionuclides for the demonstration of radiolabeled ZnAl2O4:171/169Er3+ as a potent agent for dual-modality SPECT/optical imaging. No uptake of radio nanoformulation was detected in the skeleton after 4 h of administration, which evidenced the robust integrity of ZnAl2O4:169/171Er3+. Combining the therapeutics using the emission of ß- particulates from 169Er and 171Er will be promising for the radio-theranostic application of the synthesized ZnAl2O4:169/171Er3+ nanoformulation. Cell toxicity studies of ZnAl2O4:1%Er3+ nanoparticles were examined by an MTT assay in B16F10 mouse melanoma cell lines, which demonstrated good biocompatibility. In addition, we explored the mechanism of UCL modulation via defect engineering by Bi3+ codoping in the ZnAl2O4:Er3+ upconversion nanophosphor. The UCL color tuning was successfully achieved from the red to the green region as a function of Bi3+ codoping concentrations. Further, we tried to establish a correlation of UCL tuning with the intrinsic oxygen and cation vacancy defects as a function of Bi3+ codoping concentrations with the help of electron paramagnetic resonance (EPR) and positron annihilation lifetime spectroscopy (PALS) studies. This study contributes to building a bridge between nature of defects and UC luminescence that is crucial for the design of advanced UCNPs for theranostics.


Subject(s)
Luminescence , Nanoparticles , Animals , Mice , Nanoparticles/chemistry , Tissue Distribution , Tomography, Emission-Computed, Single-Photon
2.
Eur J Nucl Med Mol Imaging ; 51(6): 1558-1573, 2024 May.
Article in English | MEDLINE | ID: mdl-38270686

ABSTRACT

PURPOSE: Classical brachytherapy of solid malignant tumors is an invasive procedure which often results in an uneven dose distribution, while requiring surgical removal of sealed radioactive seed sources after a certain period of time. To circumvent these issues, we report the synthesis of intrinsically radiolabeled and gum Arabic glycoprotein functionalized [169Yb]Yb2O3 nanoseeds as a novel nanoscale brachytherapy agent, which could directly be administered via intratumoral injection for tumor therapy. METHODS: 169Yb (T½ = 32 days) was produced by neutron irradiation of enriched (15.2% in 168Yb) Yb2O3 target in a nuclear reactor, radiochemically converted to [169Yb]YbCl3 and used for nanoparticle (NP) synthesis. Intrinsically radiolabeled NP were synthesized by controlled hydrolysis of Yb3+ ions in gum Arabic glycoprotein medium. In vivo SPECT/CT imaging, autoradiography, and biodistribution studies were performed after intratumoral injection of radiolabeled NP in B16F10 tumor bearing C57BL/6 mice. Systematic tumor regression studies and histopathological analyses were performed to demonstrate therapeutic efficacy in the same mice model. RESULTS: The nanoformulation was a clear solution having high colloidal and radiochemical stability. Uniform distribution and retention of the radiolabeled nanoformulation in the tumor mass were observed via SPECT/CT imaging and autoradiography studies. In a tumor regression study, tumor growth was significantly arrested with different doses of radiolabeled NP compared to the control and the best treatment effect was observed with ~ 27.8 MBq dose. In histopathological analysis, loss of mitotic cells was apparent in tumor tissue of treated groups, whereas no significant damage in kidney, lungs, and liver tissue morphology was observed. CONCLUSIONS: These results hold promise for nanoscale brachytherapy to become a clinically practical treatment modality for unresectable solid cancers.


Subject(s)
Brachytherapy , Ytterbium , Animals , Brachytherapy/methods , Mice , Ytterbium/chemistry , Tissue Distribution , Nanoparticles/chemistry , Isotope Labeling , Single Photon Emission Computed Tomography Computed Tomography , Mice, Inbred C57BL , Gum Arabic/chemistry , Female , Glycoproteins/chemistry , Cell Line, Tumor , Radioisotopes/chemistry , Radioisotopes/therapeutic use
3.
bioRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38260702

ABSTRACT

The chief barrier to studies of how genetic coding emerged is the lack of experimental models for ancestral aminoacyl-tRNA synthetases (AARS). We hypothesized that conserved core catalytic sites could represent such ancestors. That hypothesis enabled engineering functional "urzymes" from TrpRS, LeuRS, and HisRS. We describe here a fourth urzyme, GlyCA, detected in an open reading frame from the genomic record of the arctic fox, Vulpes lagopus. GlyCA is homologous to a bacterial heterotetrameric Class II GlyRS-B. Alphafold2 predicted that the N-terminal 81 amino acids would adopt a 3D structure nearly identical to the HisRS urzyme (HisCA1). We expressed and purified that N-terminal segment. Enzymatic characterization revealed a robust single-turnover burst size and a catalytic rate for ATP consumption well in excess of that previously published for HisCA1. Time-dependent aminoacylation of tRNAGly proceeds at a rate consistent with that observed for amino acid activation. In fact, GlyCA is actually 35 times more active in glycine activation by ATP than the full-length GlyRS-B α-subunit dimer. ATP-dependent activation of the 20 canonical amino acids favors Class II amino acids that complement those favored by HisCA and LeuAC. These properties reinforce the notion that urzymes represent the requisite ancestral catalytic activities to implement a reduced genetic coding alphabet.

4.
Arch Biochem Biophys ; 728: 109358, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35872323

ABSTRACT

Protein tyrosine nitration (PTN), a highly selective post translational modification, occurs in both prokaryotic and eukaryotic cells under nitrosative stress. However, its physiological function is not yet clear. Like many gut pathogens, Vibrio cholerae also faces nitrosative stress, which makes its proteome more vulnerable to PTN. Here, we report for the first time in-vivo PTN in V. cholerae by immunoblotting and LC-ESI-MS/MS proteomic analysis. Our results indicated that in-vivo PTN in V. cholerae was culture media independent. Surprisingly, in-vivo PTN was reduced in V. cholerae proteome under anaerobic or hypoxic condition in a nutrient deprived state. Interestingly, intracellular nitrate content was more than the nitrite content in V. cholerae under anaerobic conditions. Additionally, biochemical measurement of GSH/GSSG ratio, activities of catalase and SOD, ROS and RNS imaging by confocal microscopy confirmed a relative intracellular oxidizing environment in V. cholerae under anaerobic conditions. This altered redox environment favors the oxidation of nitrite which may be generated from protein denitration enriching the intracellular nitrate pool. The cell survival of V. cholerae can finally be facilitated by nitrate reductase (NapA) utilizing that nitrate pool. Our cell viability study using wild type and ΔnapA strain of V. cholerae also supported the role of NapA mediated cell survival under nutrient deprived anaerobic conditions. In spite of having nitrate reductase (NapA), V. cholerae lacks any nitrite reductase (NiR). Hence, in-vivo nitration may provide an avenue for toxic nitrite storage and also may help in nitrosative stress tolerance mechanism preventing further unnecessary protein nitration in V. cholerae proteome.


Subject(s)
Vibrio cholerae , Anaerobiosis , Bacterial Proteins , Cell Survival , Nitrates , Nitrites , Nutrients , Proteome , Proteomics , Tandem Mass Spectrometry
5.
Appl Radiat Isot ; 188: 110352, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35792353

ABSTRACT

Calcium-45 [T½ = 163 d, Eß (max) = 0.3 MeV] is a pure ß- emitting radioisotope which can be envisaged for potential use in palliative care of pain due to skeletal metastases of primary cancer. During production of 45Ca in nuclear reactor via 44Ca (n,γ) 45Ca route, 46Sc is co-produced as a radionuclidic impurity. In this study, we have optimized a single-step solvent extraction procedure for complete removal of 46Sc impurity from [45Ca]CaCl2. The purified radiotracer was administered intravenously in normal Wistar rats and preferential bone uptake could be demonstrated by ex vivo biodistribution studies.


Subject(s)
Pain , Palliative Care , Animals , Calcium Chloride , Calcium Radioisotopes , Humans , Palliative Care/methods , Radioisotopes , Rats , Rats, Wistar , Solvents , Tissue Distribution
6.
Front Microbiol ; 13: 847832, 2022.
Article in English | MEDLINE | ID: mdl-35479629

ABSTRACT

Macrophomina phaseolina is a global devastating necrotrophic fungal pathogen. It causes charcoal rot disease in more than 500 host plants including major food crops, pulse crops, fiber crops, and oil crops. Despite having the whole-genome sequence of M. phaseolina, understanding the M. phaseolina genome-based plant-pathogen interactions is limited in the absence of direct experimental proof of secretion. Thus, it is essential to understand the host-microbe interaction and the disease pathogenesis, which can ensure global agricultural crop production and security. An in silico-predicted secretome of M. phaseolina is unable to represent the actual secretome. We could identify 117 proteins present in the secretome of M. phaseolina using liquid chromatography-electrospray ionization-tandem mass spectrometry. Data are available via ProteomeXchange with identifier PXD032749. An array of putative virulence factors of M. phaseolina were identified in the present study using solid-state culture. Similar virulence factors have been reported in other plant pathogenic fungi also. Among the secretory fungal proteins with positive economic impacts, lignocellulolytic enzymes are of prime importance. Further, we validated our results by detecting the cell wall-degrading enzymes xylanase, endoglucanase, and amylase in the secretome of M. phaseolina. The present study may provide a better understanding about the necrotrophic fungi M. phaseolina, which modulate the host plant defense barriers using secretory proteins.

7.
Arch Microbiol ; 204(1): 62, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34940926

ABSTRACT

Macrophomina phaseolina, a necrotrophic fungal pathogen is known to cause charcoal rot disease in food crops, pulse crops, oil crops and cotton and fibre crops. Necrotrophic fungi survive on dead plant tissue. It is well known that reactive oxygen species (ROS) are produced by the host plant during plant-pathogen interaction. However, it is still unclear how M. phaseolina can overcome the ROS-induced cellular damage. To mimic the invasion of M. phaseolina inside the plant cell wall, we developed solid substrate fermentation where M. phaseolina spore suspension was inoculated on a wheat bran bed and incubated for vegetative growth. To analyse the secretome of M. phaseolina after different day interval, its secretory material was collected and concentrated. Both superoxide dismutase (SOD) and catalase were detected in the secretome by zymogram. The presence of SOD and catalase was further confirmed by liquid chromatography based mass spectrometry. The physicochemical properties of M. phaseolina catalase in terms of stability towards pH, temperature, metal ions and chaotropic agent and inhibitors indicated its fitness at different environmental conditions. Apart from the production of catalase in SSF, the studies on this particular microorganism may also have significance in necrotrophic fungal pathogen and their susceptible host plant interaction.


Subject(s)
Ascomycota/enzymology , Catalase , Superoxide Dismutase , Plant Diseases/microbiology , Secretome
8.
Nitric Oxide ; 88: 35-44, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30981896

ABSTRACT

Vibrio cholerae faces nitrosative stress during successful colonization in intestine. Very little information is available on the nitrosative stress protective mechanisms of V. cholerae. Reports show that NorR regulon control two genes hmpA and nnrS responsible for nitric oxide (NO) detoxification in V. cholerae. In the present study we first time report a novel role of V. cholerae catalases under nitrosative stress. Using zymogram analysis of catalase we showed that KatB and KatG activity were induced within 30 min in V. cholerae in the presence of sodium nitroprusside (SNP), a NO donor compound. Surprisingly, V. cholerae cell survival was found to be decreased under nitrosative stress if catalase activities were blocked by ATz, a catalase inhibitor. Flow cytometry study was conducted to detect reactive oxygen species (ROS) and reactive nitrogen species (RNS) using DHE and DHR123, fluorescent probes respectively. Short exposure of SNP to V. cholerae did not generate ROS but RNS was detectable within 30 min. Total glutathione content was increased in V. cholerae cells under nitrosative stress. Furthermore, Superoxide dismutase (SOD) and Glutathione reductase (GR) activities remained unchanged under nitrosative stress in V. cholerae indicated antioxidant role of NO which could produce peroxynitrite. To investigate the role of catalase induction under nitrosative stress in V. cholerae, we conducted peroxynitrite reductase assay using cell lysates. Interestingly, SNP treated V. cholerae cell lysates showed lowest DHR123 oxidation compared to the control set. The extent of DHR123 oxidation was more in V. cholerae cell lysate when catalases were blocked by ATz.


Subject(s)
Bacterial Proteins/metabolism , Catalase/metabolism , Nitrosative Stress/physiology , Reactive Nitrogen Species/physiology , Vibrio cholerae/physiology , Amitrole/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Catalase/antagonists & inhibitors , Catalase/genetics , Enzyme Induction , Enzyme Inhibitors , Nitric Oxide Donors/pharmacology , Nitroprusside/pharmacology
9.
Microbiol Res ; 206: 82-90, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29146263

ABSTRACT

Nitric Oxide (NO) and its associated reactive nitrogen species (RNS) produce nitrosative stress under various pathophysiological conditions in eukaryotes. The fission yeast Schizosaccharomyces pombe regulates stress response mainly through the Sty1-Atf1 MAP Kinase pathway. The present study deals with the role of transcription factor Atf1 and Sty1 in S. pombe under nitrosative stress. In this study, exposure to an NO donor resulted in S-phase slowdown with associated mitotic block in S. pombe. Deletion of sty1 and atf1 in S. pombe had differential growth sensitivity towards NO donor. Both Sty1 and Atf1 were involved in regulating mitotic slowdown in S. pombe under nitrosative stress. Experimental data obtained in this study reveals a novel role of Atf1 in initiating the replication slowdown in S. pombe under nitrosative stress. Both Sty1 and Atf1 were accumulated in the nucleus in S. pombe under nitrosative stress in a concentration and time dependent manner. Atf1 is also found to be nuclear delocalized under longer nitrosative stress.


Subject(s)
Activating Transcription Factor 1/genetics , Activating Transcription Factor 1/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Nitrosative Stress , Phosphoproteins/genetics , Phosphoproteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Cell Cycle , Cell Survival , DNA Replication , Gene Expression Profiling , Gene Expression Regulation, Fungal , Nitric Oxide/metabolism , Nuclear Proteins , Oxidative Stress , Phosphorylation , Reactive Nitrogen Species , Reactive Oxygen Species , Schizosaccharomyces/growth & development , Schizosaccharomyces/pathogenicity
10.
Appl Biochem Biotechnol ; 182(3): 871-884, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28000045

ABSTRACT

Vibrio cholerae, the causative agent of cholera, poses serious threats to humans worldwide. V. cholerae faces host inflammatory response and encounters nitrosative stress before establishing successful colonization. It is not clear how V. cholerae combats nitric oxide and reactive nitrogen species. In the present study, we used three clinical strains of V. cholerae and tested their nitrosative stress response pattern towards sodium nitroprusside (SNP) and S-Nitrosoglutathione (GSNO). Among them, V. cholerae, belonging to both O1 and O139 serotypes, showed moderate resistance to SNP and GSNO. However, a V. cholerae strain belonging to non O1 and non O139 showed sensitivity to SNP but resistance towards GSNO. Reduced glutathione and glutathione reductase play a significant role to combat nitrosative stress in V. cholerae. This is the first report where we show the presence of GSNO reductase activity in V. cholerae and that it plays an important role to detoxify S-Nitrosoglutathione. GSNO reductase activity of V. cholerae was regulated by posttranslational modification through S-nitrosylation under in vitro conditions which could be reversed by dithiothreitol (DTT). In addition, we show that biofilm formation remained unaffected under nitrosative stress in V. cholerae.


Subject(s)
Aldehyde Oxidoreductases/metabolism , Bacterial Proteins/metabolism , Nitroprusside/pharmacology , Oxidative Stress/drug effects , S-Nitrosoglutathione/pharmacology , Vibrio cholerae/enzymology , Humans
11.
Article in English | MEDLINE | ID: mdl-24334381

ABSTRACT

Biochemical networks normally operate in the neighborhood of one of its multiple steady states. It may reach from one steady state to other within a finite time span. In this paper, a closed-loop control scheme is proposed to steer states of the glycolysis and glycogenolysis (GG) pathway from one of its steady states to other. The GG pathway is modeled in the synergism and saturation system formalism, known as S-system. This S-system model is linearized into the controllable Brunovsky canonical form using a feedback linearization technique. For closed-loop control, the linear-quadratic regulator (LQR) and the linear-quadratic gaussian (LQG) regulator are invoked to design a controller for tracking prespecified steady states. In the feedback linearization technique, a global diffeomorphism function is proposed that facilitates in achieving the regulation requirement. The robustness of the regulated GG pathway is studied considering input perturbation and with measurement noise.


Subject(s)
Computational Biology/methods , Computer Simulation , Glycogenolysis/physiology , Glycolysis/physiology , Models, Biological , Feedback , Linear Models
12.
IEEE Trans Nanobioscience ; 12(2): 128-34, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23694697

ABSTRACT

A novel analysis and synthesis framework is devised for synergism and saturation system, commonly known as S-system, for improving the robustness of the TCA cycle. In order to minimize the perturbation sensitivity, a measure of robustness of the network, a new design framework is proposed. The design constraints are formulated in computationally attractive convex optimization framework. The proposed multi-objective optimization problem, framed as Linear Matrix Inequality (LMI), makes a trade-off between the robustness and the control effort of the synthesized TCA cycle.


Subject(s)
Citric Acid Cycle , Dictyostelium/metabolism , Models, Biological , Computer Simulation , Systems Biology
13.
IEEE Trans Biomed Eng ; 60(2): 554-61, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23204270

ABSTRACT

A robust synthesis technique is devised for synergism and saturation systems, commonly known as S-systems, for controlling the steady states of the glycolysis-glycogenolysis pathway. The development of the robust biochemical network is essential owing to the fragile response to the perturbation of intrinsic and extrinsic parameters of the nominal S-system. The synthesis problem is formulated in a computationally attractive convex optimization framework. The linear matrix inequalities are framed to aim at the minimization of steady-state error, improvement of robustness, and utilization of minimum control input to the biochemical network.


Subject(s)
Glycogenolysis , Glycolysis , Models, Biological , Computer Simulation , Kinetics , Software , Systems Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...