Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38734386

ABSTRACT

BACKGROUND: The contribution of Staphylococcus aureus (S. aureus) to the exacerbation of atopic dermatitis (AD) is widely documented, but its role as a primary trigger of AD skin symptoms remains poorly explored. OBJECTIVE: To reappraise the main bacterial factors and underlying immune mechanisms by which S. aureus triggers AD-like inflammation. METHODS: We capitalized on a pre-clinical model, in which different clinical isolates were applied in the absence of any prior experimental skin injury. RESULTS: We report that the development of S. aureus-induced dermatitis depended on the nature of the S. aureus strain, its viability, the concentration of the applied bacterial suspension, the production of secreted and non-secreted factors, as well as the activation of accessory gene regulatory quorum sensing system. In addition, the rising dermatitis, which exhibited the well-documented AD cytokine signature, was significantly inhibited in inflammasome adaptor protein ASC- and monocyte/macrophage-deficient animals, but not in T- and B-cell-deficient mice, suggesting a major role for the innate response in the induction of skin inflammation. However, bacterial exposure generated a robust adaptive immune response against S. aureus, and an accumulation of S. aureus-specific γδ and CD4+ tissue resident memory T (Trm) cells at the site of previous dermatitis. The latter both contributed to worsen the flares of AD-like dermatitis upon new bacteria exposures, but also, protected the mice from persistent bacterial colonization. CONCLUSION: These data highlight the induction of unique AD-like inflammation, with the generation of pro-inflammatory but protective Trm cells in a context of natural exposure to pathogenic S. aureus strains.

2.
Exp Dermatol ; 33(3): e15034, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38459631

ABSTRACT

Polymorphic light eruption (PLE) has been mechanistically linked to cytokine abnormalities. Emerging preclinical evidence posits the skin microbiome as a critical modulator of ultraviolet (UV)-induced cytokine expression, thereby influencing subsequent immune responses. This intricate relationship remains underexplored in the context of PLE. Hence, we investigated the differential responses between disinfected and non-disinfected skin following both single and repetitive exposures to solar-simulated UV radiation in patients with PLE. An experimental, half-body pilot study was conducted involving six PLE patients and 15 healthy controls. Participants' skin was exposed to single and multiple doses of solar-simulated UV radiation, both in disinfected and in non-disinfected skin areas. The co-primary outcomes were PLE score and cytokine expression in blister fluid analysed through OLINK proteomic profiling. Secondary outcomes were erythema, pigmentation, induction of apoptotic cells in vacuum-generated suction blisters, and density of infiltrate in skin biopsies of PLE patients. Among the 71 cytokines analysed, baseline expression levels of 20 specific cytokines-integral to processes such as apoptosis, inflammation, immune cell recruitment, cellular growth, and differentiation-were significantly impaired in PLE patients compared with healthy controls. Notably, skin disinfection reversed the observed cytokine imbalances following a single UV exposure at the minimal erythema dose (MED) level and exhibited even more pronounced effects after multiple UV exposures. However, no significant differences were evident in PLE score, erythema, pigmentation, or rates of apoptotic cell induction upon UV radiation. These findings provide evidence for UV-driven cytokine regulation by the skin microbiota and imply microbiome involvement in the PLE immune response.


Subject(s)
Dermatitis, Contact , Photosensitivity Disorders , Humans , Photosensitivity Disorders/metabolism , Pilot Projects , Proteomics , Skin/pathology , Ultraviolet Rays , Cytokines , Erythema
3.
Sci Rep ; 13(1): 7207, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37137992

ABSTRACT

Skin metabolites (< 1500 Da) play a critical role in barrier function, hydration, immune response, microbial invasion, and allergen penetration. We aimed to understand the global metabolic profile changes of the skin in relation to the microbiome and UV exposure and exposed germ-free (devoid of microbiome), disinfected mice (partially devoid of skin microbiome) and control mice with intact microbiome to immunosuppressive doses of UVB radiation. Targeted and untargeted lipidome and metabolome profiling was performed with skin tissue by high-resolution mass spectrometry. UV differentially regulated various metabolites such as alanine, choline, glycine, glutamine, and histidine in germ-free mice compared to control mice. Membrane lipid species such as phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin were also affected by UV in a microbiome-dependent manner. These results shed light on the dynamics and interactions between the skin metabolome, microbiome, and UV exposure and open new avenues for the development of metabolite- or lipid-based applications to maintain skin health.


Subject(s)
Microbiota , Mice , Animals , Metabolome/physiology , Skin , Ultraviolet Rays , Mass Spectrometry
4.
Front Immunol ; 14: 1125635, 2023.
Article in English | MEDLINE | ID: mdl-36761743

ABSTRACT

Atopic dermatitis (AD) is a common chronic inflammatory skin disease that significantly affects the patient's quality of life. A disrupted skin barrier, type 2 cytokine-dominated inflammation, and microbial dysbiosis with increased Staphylococcus aureus colonization are critical components of AD pathogenesis. Patients with AD exhibit decreased expression of antimicrobial peptides (AMPs) which is linked to increased colonization by Staphylococcus aureus. The skin microbiome itself is a source of several AMPs. These host- and microbiome-derived AMPs define the microbial landscape of the skin based on their differential antimicrobial activity against a range of skin microbes or their quorum sensing inhibitory properties. These are particularly important in preventing and limiting dysbiotic colonization with Staphylococcus aureus. In addition, AMPs are critical for immune homeostasis. In this article, we share our perspectives about the implications of microbial derived AMPs in AD patients and their potential effects on overlapping factors involved in AD. We argue and discuss the potential of bacterial AMPs as therapeutics in AD.


Subject(s)
Dermatitis, Atopic , Staphylococcal Infections , Humans , Antimicrobial Peptides , Quality of Life , Skin , Inflammation/pathology , Staphylococcus aureus , Staphylococcal Infections/pathology
5.
Front Med (Lausanne) ; 9: 908047, 2022.
Article in English | MEDLINE | ID: mdl-35755042

ABSTRACT

Patients with polymorphic light eruption (PLE) develop lesions upon the first exposure to sun in spring/summer, but lesions usually subside during season due to the natural (or medical) photohardening. However, these lesions tend to reappear the following year and continue to do so in most patients, suggesting the presence of a disease memory. To study the potential role of skin resident memory T cells (Trm), we investigated the functional phenotype of Trm and the expression of IL-15 in PLE. IL-15 is known to drive Trm proliferation and survival. Multiplex immunofluorescence was used to quantify the expression of CD3, CD4, CD8, CD69, CD103, CD49a, CD11b, CD11c, CD68, granzyme B (GzmB), interferon-gamma (IFN-γ), and IL-15 in formalin-fixed, paraffin-embedded lesional skin samples from PLE patients and healthy skin from control subjects. Unlike the constitutive T cell population in healthy skin, a massive infiltration of T cells in the dermis and epidermis was observed in PLE, and the majority of these belonged to CD8+ T cells which express Trm markers (CD69, CD103, CD49a) and produced cytotoxic effector molecules GzmB and IFN-γ. Higher numbers of CD3+ T cells and CD11b+CD68+ macrophages produced IL-15 in the dermis as compared to healthy skin. The dominant accumulation of cytotoxic Trm cells and increased expression of IL-15 in lesional skin of PLE patients strongly indicates the potential role of skin Trm cells in the disease manifestation and recurrence.

7.
Exp Dermatol ; 30(6): 841-846, 2021 06.
Article in English | MEDLINE | ID: mdl-33629779

ABSTRACT

Topical dithranol is effective in autoimmune conditions like alopecia areata, inducing hair regrowth in a high percentage of cases. Exact mechanisms of dithranol in alopecia areata, with seemingly healthy epidermis besides altered hair follicles, are not well understood. To better understand dithranol's mechanisms on healthy skin, we analysed its effect on normal murine as well as xenografted human skin. We found a strong increase in mRNA expression of anti-microbial peptides (AMPs) (eg Lcn2, Defb1, Defb3, S100a8, S100a9), keratinocyte differentiation markers (eg Serpinb3a, Flg, Krt16, Lce3e) and inflammatory cytokines (eg Il1b and Il17) in healthy murine skin. This effect was paralleled by inflammation and disturbed skin barrier, as well as an injury response resulting in epidermal hyperproliferation, as observed in murine and xenografted adult human skin. This contact response and disturbed barrier induced by dithranol might lead via a vicious loop between AMPs such as S100a8/a9 (that led to skin swelling itself after topical application) and cytokines such as IL-1ß to an immune suppressive environment in the skin. A better understanding of the skin's physiologic response to dithranol may open up new avenues for the establishment of novel therapeutics (including AMP-related/interfering molecules) for certain skin conditions, such as alopecia areata.


Subject(s)
Alopecia Areata/drug therapy , Anthralin/pharmacology , Antimicrobial Peptides/drug effects , Cytokines/drug effects , Interleukin-1beta/drug effects , Keratinocytes/drug effects , Animals , Dermatologic Agents/pharmacology , Humans , Mice , Mice, Inbred BALB C
8.
Nutrients ; 12(6)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560310

ABSTRACT

The human skin hosts innumerable microorganisms and maintains homeostasis with the local immune system despite the challenges offered by environmental factors such as ultraviolet radiation (UVR). UVR causes cutaneous alterations such as acute (i.e., sunburn) and chronic inflammation, tanning, photoaging, skin cancer, and immune modulation. Phototherapy on the other hand is widely used to treat inflammatory skin diseases such as psoriasis, atopic dermatitis, polymorphic light eruption and graft-versus-host disease (GvHD), as well as neoplastic skin diseases such as cutaneous T cell lymphoma, among others. Previous work has addressed the use of pro- and pre-biotics to protect against UVR through anti-oxidative, anti-inflammatory, anti-aging, anti-carcinogenic and/or pro-and contra-melanogenic properties. Herein, we discuss and share perspectives of the potential benefits of novel treatment strategies using microbes and pro- and pre-biotics as modulators of the skin response to UVR, and how they could act both for protection against UVR-induced skin damage and as enhancers of the UVR-driven therapeutic effects on the skin.


Subject(s)
Microbiota , Phototherapy/methods , Prebiotics , Probiotics/pharmacology , Skin/microbiology , Ultraviolet Rays/adverse effects , Aging , Humans
9.
Elife ; 92020 06 02.
Article in English | MEDLINE | ID: mdl-32484435

ABSTRACT

Despite the introduction of biologics, topical dithranol (anthralin) has remained one of the most effective anti-psoriatic agents. Serial biopsies from human psoriatic lesions and both the c-Jun/JunB and imiquimod psoriasis mouse model allowed us to study the therapeutic mechanism of this drug. Top differentially expressed genes in the early response to dithranol belonged to keratinocyte and epidermal differentiation pathways and IL-1 family members (i.e. IL36RN) but not elements of the IL-17/IL-23 axis. In human psoriatic response to dithranol, rapid decrease in expression of keratinocyte differentiation regulators (e.g. involucrin, SERPINB7 and SERPINB13), antimicrobial peptides (e.g. ß-defensins like DEFB4A, DEFB4B, DEFB103A, S100 proteins like S100A7, S100A12), chemotactic factors for neutrophils (e.g. CXCL5, CXCL8) and neutrophilic infiltration was followed with much delay by reduction in T cell infiltration. Targeting keratinocytes rather than immune cells may be an alternative approach in particular for topical anti-psoriatic treatment, an area with high need for new drugs.


Subject(s)
Anthralin/pharmacology , Interleukin-1/metabolism , Keratinocytes , Psoriasis , Animals , Chemokines, CXC/metabolism , Dermatologic Agents/pharmacology , Interleukin-1/genetics , Keratinocytes/drug effects , Keratinocytes/metabolism , Mice , Neutrophils/drug effects , Neutrophils/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Psoriasis/immunology , Psoriasis/metabolism , Serpins/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology , Skin/drug effects , Skin/pathology
11.
Cancers (Basel) ; 12(3)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32111012

ABSTRACT

The skin microbiota plays a prominent role in health and disease; however, its contribution to skin tumorigenesis is not well understood. We comparatively assessed the microbial community compositions from excision specimens of the main human non-melanoma skin cancers, actinic keratosis (AK), squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). Keratinocyte skin tumors are characterized by significantly different microbial community compositions, wherein AK and SCC are more similar to each other than to BCC. Notably, in SCC, which represents the advanced tumor entity and frequently develops from AK, overabundance of Staphylococcus aureus, a known skin pathogen, was noted. Moreover, S. aureus overabundance was significantly associated with increased human ß-defensin-2 (hBD-2) expression in SCC. By challenging human SCC cell lines with S. aureus, a specific induction of hBD-2 expression and increased tumor cell growth was seen. Increased proliferation was also induced by directly challenging SCC cells with hBD-2. Together, our data indicate that a changed microbial community composition in SCC, specified by S. aureus overabundance, might promote tumor cell growth via modulation of hBD-2 expression.

12.
iScience ; 15: 211-222, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31079025

ABSTRACT

The skin is colonized by a diverse microbiome intricately involved in various molecular and cellular processes within the skin and beyond. UV radiation is known to induce profound changes in the skin and modulate the immune response. However, the role of the microbiome in UV-induced immune suppression has been overlooked. By employing the standard model of contact hypersensitivity (using germ-free mice) we found diminished UV-induced systemic immune suppression in the presence of microbiome. Upon UV exposure, we found enhanced epidermal hyperplasia and neutrophilic infiltration in the presence and enhanced numbers of mast cells and monocyte or macrophages in the absence of microbiome. Transcriptome analysis revealed a predominant expression of cytokine genes related to pro-inflammatory milieu in the presence versus immunosuppressive milieu (with increased interleukin-10) in the absence of microbiome. Collectively, microbiome abrogates the immunosuppressive response to UV by modulating gene expression and cellular microenvironment of the skin.

13.
JAMA Dermatol ; 155(5): 538-547, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30892603

ABSTRACT

Importance: Psoralen-UV-A (PUVA) photochemotherapy is standard first-line treatment for skin-limited, early-stage mycosis fungoides capable of producing high initial complete response (CR) rates. However, much remains unknown about PUVA's therapeutic mechanisms, optimal duration and frequency of treatment, dose escalation, or use as maintenance therapy. Objectives: To evaluate low-dose, low-frequency PUVA, and whether maintenance treatment extends disease-free remission in patients with mycosis fungoides. Design, Setting, and Participants: This prospective randomized clinical trial with defined PUVA dosing regimen was carried out in 5 centers (Graz, Vienna, Hietzing, Innsbruck, and Salzburg) across Austria. Patients with stage IA to IIA mycosis fungoides (n = 27) were enrolled in the study beginning March 13, 2013, with the last patient enrolled March 21, 2016. These patients were treated with oral 8-methoxypsoralen followed by UV-A exposure 2 times per week for 12 to 24 weeks until CR. Patients with CR were randomized to PUVA maintenance for 9 months (14 total exposures) or no maintenance. The study was conducted from April 27, 2012, to July 27, 2018. Data analysis of the primary end point was of the intention-to-treat population, and the secondary end point analysis was of the evaluable population. Main Outcomes and Measures: Efficacy of the PUVA regimen was determined by the rate of CR as defined by a modified severity-weighted assessment tool (mSWAT) score reduction to 0. Levels of proinflammatory molecules in serum and histologic features and percentage of clonal T cells in skin were assessed to search for biomarkers of clinical response. Results: In 27 patients with mycosis fungoides, 19 (70%) were male with mean (range) age 61 (30-80) years. At baseline, patients with CR had a mean (range) mSWAT score of 18.6 (1-66) compared with 16.8 (3-46) in patients with partial response. The 12- to 24-week PUVA induction regimen reduced the mSWAT score in all patients and led to CR in 19 (70%) of 27 patients and a low mean cumulative UV-A dose of 78.5 J/cm2. The subsequent standardized 9-month PUVA maintenance phase prolonged median (range) disease-free remission from 4 (1-20) months to 15 (1-54) months (P = .02). High density of histologic infiltrate and high percentage of clonal TCR sequences in skin biopsy specimens at baseline were inversely associated with therapeutic response. No severe adverse effects were seen during the PUVA induction or maintenance phase. Conclusions and Relevance: This proof-of-concept study identifies potential biomarkers for therapeutic response to PUVA in mycosis fungoides; it also demonstrates that low-dose, low-frequency PUVA appears to be highly effective, and maintenance treatment may extend disease-free remission. Trial Registration: ClinicalTrials.gov identifier: NCT01686594.


Subject(s)
Mycosis Fungoides/drug therapy , PUVA Therapy/methods , Skin Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Austria , Biomarkers/metabolism , Female , Humans , Male , Middle Aged , Mycosis Fungoides/pathology , Prospective Studies , Skin Neoplasms/pathology , Time Factors , Treatment Outcome
14.
Front Med (Lausanne) ; 5: 166, 2018.
Article in English | MEDLINE | ID: mdl-29900173

ABSTRACT

The human skin is known to be inhabited by diverse microbes, including bacteria, fungi, viruses, archaea, and mites. This microbiome exerts a protective role against infections by promoting immune development and inhibiting pathogenic microbes to colonize skin. One of the factors having an intense effect on the skin and its resident microbes is ultraviolet-radiation (UV-R). UV-R can promote or inhibit the growth of microbes on the skin and modulate the immune system which can be either favorable or harmful. Among potential UV-R targets, skin resident memory T cells (TRM) stand as well positioned immune cells at the forefront within the skin. Both CD4+ or CD8+ αß TRM cells residing permanently in peripheral tissues have been shown to play prominent roles in providing accelerated and long-lived specific immunity, tissue homeostasis, wound repair. Nevertheless, their response upon UV-R exposure or signals from microbiome are poorly understood compared to resident TCRγδ cells. Skin TRM survive for long periods of time and are exposed to innumerable antigens during lifetime. The interplay of TRM with skin residing microbes may be crucial in pathophysiology of various diseases including psoriasis, atopic dermatitis and polymorphic light eruption. In this article, we share our perspective about how UV-R may directly shape the persistence, phenotype, specificity, and function of skin TRM; and moreover, whether UV-R alters barrier function, leading to microbial-specific skin TRM, disrupting the healthy balance between skin microbiome and skin immune cells, and resulting in chronic inflammation and diseased skin.

15.
Photodermatol Photoimmunol Photomed ; 34(2): 137-144, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29044786

ABSTRACT

BACKGROUND: Polymorphic light eruption (PLE) has been attributed to type IV, most likely delayed-type hypersensitivity response (adaptive immunity) but little is known on innate immunity, especially antimicrobial peptides (AMPs) in the disease. Abnormalities in AMP expression have been linked to pathological skin conditions such as atopic dermatitis (AD) and psoriasis. METHODS: Antimicrobial peptide profiling was carried out in PLE skin samples (n,12) compared with that of healthy (n,13), atopic (n,6), and psoriatic skin (n,6). RESULTS: Compared to healthy skin, we observed increased expression of psoriasin and RNAse7 (both mostly in stratum granulosum of the epidermis), HBD-2 (in the cellular infiltrate of the dermis), and LL37 (mostly in and around blood vessels and glands) in PLE lesional skin, a similar expression profile as present in psoriatic skin and different to that of AD (with little or no expression of psoriasin, RNAse7, HBD-2, and LL37). HBD-3 was downregulated in PLE compared to its high expression in the epidermis and dermis of healthy skin, AD, and psoriasis. CONCLUSION: The unique profile of differentially expressed AMPs in PLE implies a role in the pathophysiology of the disease, possibly directly or indirectly linked to the microbiome of the skin.


Subject(s)
Antimicrobial Cationic Peptides/biosynthesis , Dermatitis, Atopic/metabolism , Gene Expression Regulation , Psoriasis/metabolism , Skin/metabolism , Adolescent , Adult , Aged , Dermatitis, Atopic/pathology , Female , Humans , Male , Middle Aged , Psoriasis/pathology , Skin/pathology
16.
Front Microbiol ; 7: 1235, 2016.
Article in English | MEDLINE | ID: mdl-27559331

ABSTRACT

Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin's microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression.

17.
Exp Dermatol ; 25(12): 999-1001, 2016 12.
Article in English | MEDLINE | ID: mdl-27514020

ABSTRACT

The primary trigger of polymorphic light eruption (PLE) remains to be uncovered. We hypothesize that PLE may be initiated by elements resulting from UV-induced damage to microbial communities of the skin, leading to a cascade of events eventually resulting in the skin rash of the disease. One mechanism by which epidermal injury by UV radiation could trigger PLE are danger signals such as damage or pathogen associated molecular patterns DAMP/PAMPs or commensal-associated molecular patterns (CAMPs). Such triggers could be produced due to UV-induced stress on microbial communities of the skin and exacerbate inflammatory responses by inducing the innate immune system through antimicrobial peptides (AMPs) such as psoriasin, RNase7, HBD-2 and LL-37. These AMPs also actively take part in initiating adaptive immunity. That signals derived from microbial rather than human elements may initiate PLE is supported by series of observations, including the PLE-protective effect of topically applied microbial-derived DNA repair enzymes.


Subject(s)
Photosensitivity Disorders/microbiology , Skin Diseases, Genetic/microbiology , Humans , Skin/microbiology , Skin/radiation effects
18.
Exp Dermatol ; 25(12): 937-944, 2016 12.
Article in English | MEDLINE | ID: mdl-27376966

ABSTRACT

Psoriasis commonly responds beneficially to UV radiation from natural sunlight or artificial sources. Therapeutic mechanisms include the proapoptotic and immunomodulating effects of UV, affecting many cells and involving a variety of pro- and anti-inflammatory cytokines, downregulating the Th17/IL-23 response with simultaneous induction of regulatory immune cells. However, exposure to UV radiation in a subset of psoriasis patients leads to exacerbation of the disease. We herein shed light on the predisposing factors of photosensitive psoriasis, including genetics (such as HLA-Cw*0602 or CARD14), gender and coexisting photodermatoses such as polymorphic light eruption (PLE) in the context of potential molecular mechanisms behind therapeutic photoresponsiveness or photoaggravation. UV-induced damage/pathogen-associated molecular patterns, damage to self-coding RNA (signalling through Toll-like receptors), certain antimicrobial peptides and/or inflammasome activation may induce innate immunity, leading to psoriasis at the site of UV exposure when there is concomitant, predisposing resistance against UV-induced suppression of the adaptive immune response (like in PLE) that otherwise would act to reduce psoriasis.


Subject(s)
CARD Signaling Adaptor Proteins/genetics , Guanylate Cyclase/genetics , Membrane Proteins/genetics , Photosensitivity Disorders/genetics , Psoriasis/radiotherapy , Humans , Phototherapy , Psoriasis/genetics
19.
Front Microbiol ; 7: 2012, 2016.
Article in English | MEDLINE | ID: mdl-28066342

ABSTRACT

Microbiome research and improvements in high throughput sequencing technologies revolutionize our current scientific viewpoint. The human associated microbiome is a prominent focus of clinical research. Large cohort studies are often required to investigate the human microbiome composition and its changes in a multitude of human diseases. Reproducible analyses of large cohort samples require standardized protocols in study design, sampling, storage, processing, and data analysis. In particular, the effect of sample storage on actual results is critical for reproducibility. So far, the effect of storage conditions on the results of microbial analysis has been examined for only a few human biological materials (e.g., stool samples). There is a lack of data and information on appropriate storage conditions on other human derived samples, such as skin. Here, we analyzed skin swab samples collected from three different body locations (forearm, V of the chest and back) of eight healthy volunteers. The skin swabs were soaked in sterile buffer and total DNA was isolated after freezing at -80°C for 24 h, 90 or 365 days. Hypervariable regions V1-2 were amplified from total DNA and libraries were sequenced on an Illumina MiSeq desktop sequencer in paired end mode. Data were analyzed using Qiime 1.9.1. Summarizing all body locations per time point, we found no significant differences in alpha diversity and multivariate community analysis among the three time points. Considering body locations separately significant differences in the richness of forearm samples were found between d0 vs. d90 and d90 vs. d365. Significant differences in the relative abundance of major skin genera (Propionibacterium, Streptococcus, Bacteroides, Corynebacterium, and Staphylococcus) were detected in our samples in Bacteroides only among all time points in forearm samples and between d0 vs. d90 and d90 vs. d365 in V of the chest and back samples. Accordingly, significant differences were detected in the ratios of the main phyla Actinobacteria, Firmicutes, and Bacteroidetes: Actinobacteria vs. Bacteroidetes at d0 vs. d90 (p-value = 0.0234), at d0 vs. d365 (p-value = 0.0234) and d90 vs. d365 (p-value = 0.0234) in forearm samples and at d90 vs. d365 in V of the chest (p-value = 0.0234) and back samples (p-value = 0.0234). The ratios of Firmicutes vs. Bacteroidetes showed no significant changes in any of the body locations as well as the ratios of Actinobacteria vs. Firmicutes at any time point. Studies with larger sample sizes are required to verify our results and determine long term storage effects with regard to specific biological questions.

SELECTION OF CITATIONS
SEARCH DETAIL
...