Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(2): 1125-1134, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38099322

ABSTRACT

The oxygen content was measured in cubic perovskite-type La1/3Sr2/3Fe1-xMnxO3-δ (x = 0.1, 0.17, 0.25, and 1/3) in the range of oxygen partial pressure from 10-22 to 0.5 atm at 750-950 °C with a step of 50 °C by coulometric titration. Gradual removal of oxygen from the oxides during the measurements was carried out until the stability limit was achieved and the reductive decomposition began. An increase in manganese content was shown to lead to a decrease in the stability of La1/3Sr2/3Fe1-xMnxO3-δ under reducing conditions. The obtained data on oxygen content were used for defect chemistry modeling in the oxides. The enthalpy of the Fe3+ to Fe4+ and Mn3+ to Mn4+ oxidation reactions (ΔHox0) was determined to be -103.2 ± 0.3 and -250 ± 2 kJ mol-1, respectively, for the x = 0.1 composition, and increased slightly with increasing manganese content. The large difference in ΔHox0 determines a strong distinction between the behavior of iron and manganese in perovskite-type oxides. An increase in manganese content in La1/3Sr2/3Fe1-xMnxO3-δ was found to lead to a decrease in the concentration of Fe4+ ions, but did not affect the concentration of Fe2+ ions. The impact of La/Sr ratio was evaluated by comparison of the obtained data with that for La0.5Sr0.5Fe1-xMnxO3-δ, and found to be different for iron and manganese. An increase in lanthanum fraction causes a decrease in the concentration of Fe2+ ions and an increase in the concentration of Mn2+ under reducing conditions.

2.
Materials (Basel) ; 15(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35806512

ABSTRACT

The structure, oxygen non-stoichiometry, and defect equilibrium in perovskite-type PrBa1-xSrxFe2O6-δ (x = 0, 0.25, 0.50) synthesized at 1350 °C were studied. For all compositions, X-ray diffraction testifies to the formation of a cubic structure (S.G. Pm3¯m), but an electron diffraction study reveals additional diffuse satellites around each Bragg spot, indicating the primary incommensurate modulation with wave vectors about ±0.43a*. The results were interpreted as a sign of the short-order in both A-cation and anion sublattices in the areas of a few nanometers in size, and of an intermediate state before the formation of an ordered superstructure. An increase in oxygen deficiency was found to promote the ordering, whereas partial substitution of barium by strontium caused the opposite effect. The oxygen content in oxides as a function of oxygen partial pressure and temperature was measured by coulometric titration, and the data were used for the modeling of defect equilibrium in oxides. The simulation results implied oxygen vacancy ordering in PrBa1-xSrxFe2O6-δ that is in agreement with the electron diffraction study. Besides oxidation and charge disproportionation reactions, the reactions of oxygen vacancy distribution between non-equivalent anion positions, and their trapping in clusters with Pr3+ ions were taken into account by the model. It was demonstrated that an increase in the strontium content in Pr0.5Ba0.5-xSrxFeO3-δ suppressed ordering of oxygen vacancies, increased the binding energy of oxygen ions in the oxides, and resulted in an increase in the concentration of p-type carriers.

3.
Dalton Trans ; 50(48): 17967-17980, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34854863

ABSTRACT

The oxygen content in La0.5Sr0.5Fe1-xMnxO3-δ, measured by coulometric titration in a wide range of oxygen partial pressure at various temperatures, was used for defect chemistry analysis. The obtained data were well approximated by a model assuming defect formation in La0.5Sr0.5Fe1-xMnxO3-δvia Fe3+ and Mn3+ oxidation reactions and charge disproportionation on Fe3+ and Mn3+ ions. The partial molar enthalpy and entropy of oxygen in La0.5Sr0.5Fe1-xMnxO3-δ obtained by statistical thermodynamic calculations were found to be in satisfactory agreement with those obtained using the Gibbs-Helmholtz equations, thus further confirming the adequacy of the model. The impact of manganese substitution on defect equilibrium in La0.5Sr0.5Fe1-xMnxO3-δ was shown to be attributed to a lower enthalpy of Mn3+ oxidation reaction (vs. for the oxidation of Fe3+) and the charge disproportionation reaction on Mn3+ (vs. for that on Fe3+). The former makes Mn4+ ions more resistant to reduction than Fe4+. The latter favors the presence of Mn2+, Mn3+, and Mn4+ ions in oxides in comparable concentrations. The distribution of charge carriers over iron and manganese ions was determined as a function of oxygen content in La0.5Sr0.5Fe1-xMnxO3-δ.

4.
Materials (Basel) ; 14(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34683581

ABSTRACT

The electrical conductivity of La0.5-xSr0.5FeO3-δ, investigated as a function of the nominal cation deficiency in the A-sublattice, x, varying from 0 to 0.02, has demonstrated a nonlinear dependence. An increase in the x value from 0 to 0.01 resulted in a considerable increase in electrical conductivity, which was shown to be attributed mainly to an increase in the mobility of the charge carriers. A combined analysis of the defect equilibrium and the charge transport in La0.5-xSr0.5FeO3-δ revealed the increase in the mobility of oxygen ions, electrons, and holes by factors of ~1.5, 1.3, and 1.7, respectively. The observed effect is assumed to be conditioned by a variation in the oxide structure under the action of the cationic vacancy formation. It was found that the cation deficiency limit in La0.5-xSr0.5FeO3-δ did not exceed 0.01. A small overstep of this limit was shown to result in the formation of (Sr,La)Fe12O19 impurity, which even in undetectable amounts reduced the conductivity of the material. The presence of (Sr,La)Fe12O19 impurity was revealed by X-ray diffraction on the ceramic surface after heat treatment at 1300 °C. It is most likely that the formation of traces of the liquid phase under these conditions is responsible for the impurity migration to the ceramic surface. The introduction of a cation deficiency of 0.01 into the A-sublattice of La0.5-xSr0.5FeO3-δ can be recommended as an effective means to enhance both the oxygen ion and the electron conductivity and improve ceramic sinterability.

5.
Dalton Trans ; 48(14): 4530-4537, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30895991

ABSTRACT

The electrical conductivity of SrFe1-xMoxO3-δ (0.07, 0.15, 0.25) was measured in the range of oxygen partial pressure of 10-16-0.5 atm and at temperatures 800-950 °C by a four-probe dc technique. Experimental results were satisfactorily simulated with a model suggesting that oxygen ions and electronic charge carriers of n- and p-types were involved in conduction. The mobility of charge carriers was calculated using partial conductivities and earlier published oxygen nonstoichiometry data. The mobility of p-type charge carriers was found to decrease in response to a decreasing oxygen content or an increasing molybdenum content in the oxide. The mobility of n-type carriers was found to be unaffected by the oxygen content, but exhibited an accelerating increase upon increasing the molybdenum content. Such behavior of the electron mobility was interpreted in view of the tendency of iron and molybdenum cations to undergo ordering based on the supposition that two different mechanisms of electron transport were involved in these oxides. It was assumed that nanoscale ordered areas with fast electron transport dispersed in the disordered perovskite matrix played the role of a high-conductivity filler in a composite consisting of two components with different conductivities. The behavior of the effective electron mobility was approximated well using the percolation theory. The molybdenum content x = 0.327 was calculated to be the percolation threshold in SrFe1-xMoxO3-δ.

6.
Phys Chem Chem Phys ; 20(6): 4442-4454, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29372747

ABSTRACT

Cubic perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) is one of the mixed ionic-electronic conductors with the highest oxygen permeability known to date. It serves as a parent material for the development of functional derivatives for electrochemical applications including oxygen separation membranes, solid electrolyte cell electrodes and electrocatalysts for the oxygen evolution reaction. The present study is focused on the determination of the precise stability boundaries of cubic perovskite BSCF employing a coulometric titration technique in combination with thermogravimetric analysis, X-ray and neutron diffraction, and molecular dynamics simulations. Both the low-p(O2) and high-p(O2) stability boundaries at 700-950 °C were found to correspond to a fixed value of oxygen content in the perovskite lattice of 3 - δ = ∼2.13 and ∼2.515, respectively. The stability limits in this temperature range are expressed by the following equations: high-p(O2) boundary: log p(O2) (atm) (±0.1) = -10 150/T (K) + 8.055; low-p(O2) boundary: log p(O2) (atm) (±0.03) = -20 750/T (K) + 4.681. The p(O2)-T phase diagram of the BSCF system under oxidizing conditions is addressed in a wider temperature range and is shown to include a region of precipitation of a "low-temperature" phase occurring at 400-500 °C. The fraction of the low-temperature precipitate, which co-exists with the cubic perovskite phase and is stable up to 790-820 °C, increases upon increasing p(O2) in the range 0.21-1.0 atm.

SELECTION OF CITATIONS
SEARCH DETAIL
...