Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Rev Anal Chem (Palo Alto Calif) ; 12(1): 347-370, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31018101

ABSTRACT

Experimental techniques to monitor and visualize the behaviors of single nanoparticles have not only revealed the significant spatial and temporal heterogeneity of those individuals, which are hidden in ensemble methods, but more importantly, they have also enabled researchers to elucidate the origin of such heterogeneity. In pursuing the intrinsic structure-function relations of single nanoparticles, the recently developed stochastic collision approach demonstrated some early promise. However, it was later realized that the appropriate sizing of a single nanoparticle by an electrochemical method could be far more challenging than initially expected owing to the dynamic motion of nanoparticles in electrolytes and complex charge-transfer characteristics at electrode surfaces. This clearly indicates a strong necessity to integrate single nanoparticle electrochemistry with high-resolution optical microscopy. Hence, this review aims to give a timely update of the latest progress for both electrochemically sensing and seeing single nanoparticles. A major focus is on collision-based measurements, where nanoparticles or single entities in solution impact on a collector electrode and the electrochemical response is recorded. These measurements are further enhanced with optical measurements in parallel. For completeness, advances in other related methods for single nanoparticle electrochemistry are also included.

2.
Anal Chem ; 91(10): 6507-6513, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30916930

ABSTRACT

Tyrosinase (TYR) which can catalyze the oxidation of catechol is recognized as a significant biomarker of melanocytic lesions, thus developing powerful methods for the determination of TYR activity is highly desirable for the early diagnosis of melanin-related diseases, including melanoma. Herein, we develop a novel portable and recyclable surface-enhanced Raman scattering (SERS) sensor, prepared by assembling gold nanoparticles and p-thiol catechol ( p-TC) on an ITO electrode, for detecting TYR activity via the SERS spectral variation caused by the conversion of p-TC into its corresponding quinone under TYR catalysis. The developed SERS sensor has a rapid response to TYR within 1 min under the optimized conditions and shows high selectivity for TYR with the detection limit at 0.07 U/mL. Importantly, this SERS sensor can be easily regulated by applying negative voltage to achieve circular utilization, favoring the automation of SERS detection. Furthermore, the presented recyclable SERS sensor can perform well on both the determination of TYR activity in serum and the assessment of TYR inhibitor, demonstrating huge potential in the sensitive, selective, and facile detection of TYR activity for disease diagnosis and drug screening related with TYR.


Subject(s)
Electrochemical Techniques/instrumentation , Gold , Metal Nanoparticles/chemistry , Monophenol Monooxygenase/metabolism , Recycling , Biosensing Techniques/methods , Limit of Detection , Spectrum Analysis, Raman/methods
3.
Analyst ; 144(4): 1394-1400, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30575825

ABSTRACT

Leucine aminopeptidase (LAP), an important proteolytic enzyme, is closely associated with diverse physiological and pathological disorders such as liver injury and cancers. Hence, it is imperative to develop an effective method to detect LAP activity for early diagnosis of diseases. In this work, we report a novel SERS probe bis-s-s'-[(s)-2-amino-N-(3-thiophenyl)-Leu]. (b-(s)-ANT-Leu) with an l-leucine amide group, which can specially respond to LAP, to assay the LAP activity according to the SERS spectral changes between the probe molecule and its corresponding hydrolysis product resulting from the catalysis of LAP. This SERS approach features high selectivity on account of the specificity of the reaction combined with the instinctive fingerprinting ability of SERS and shows a good linear relationship in a wide range from 0.2 to 100 mU mL-1 with a detection limit as low as 0.16 mU mL-1. In addition, the SERS-based strategy can be competent for LAP activity detection in clinical patient serum samples and LAP inhibitor evaluation, demonstrating its great potential in the pathological analysis for diseases involving LAP and the screening of LAP inhibitors.


Subject(s)
Leucine/analogs & derivatives , Leucyl Aminopeptidase/blood , Molecular Probes/chemistry , Spectrum Analysis, Raman/methods , Biomarkers/blood , Humans , Leucine/chemistry , Limit of Detection
4.
Anal Chem ; 90(10): 6059-6063, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29701064

ABSTRACT

Inspired by the addition-elimination catalytic mechanism of natural pyrroloquinoline quinone (PQQ) containing proteins, PQQ-modified hybrid nanomaterials have been increasingly developed recently as biomimetic heterogeneous electrocatalysts. However, up until now, no existing electrochemical approach was able to assess the intrinsic catalytic activity of PQQ sites, impeding the design of efficient PQQ-based electrocatalysts. Herein, in this work, we introduced a new method to calculate the turnover frequency (TOF) of any individual PQQ functional group for electrocatalytic oxidation of tris(2-carboxyethyl)phosphine (TCEP), through the study of single PQQ-decorated carbon nanotube (CNT) collisions at a carbon fiber ultramicroelectrode by chronoamperometry. The core advantage of this approach is being able to resolve the number of PQQ catalytic sites grafted on each individual CNT, so that the charge of any CNT collision event can be accurately translated into the intrinsic activity of the respective PQQ functional groups. The resulting collision-induced current responses clearly showed that the functionalization of CNTs with PQQ could indeed enhance its catalytic performance by 3 times, reaching a TOF value of 133 s-1 at 1.0 V vs Ag/AgCl. Such a single CNT collision technique, which is proposed for the first time in this work, can open up a new avenue for studying the intrinsic (electro)catalytic performance at a molecular level.

SELECTION OF CITATIONS
SEARCH DETAIL
...