Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PNAS Nexus ; 2(8): pgad266, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37601310

ABSTRACT

Modulating temperature fields is indispensable for advancing modern technologies: space probes, electronic packing, and implantable medical devices, to name a few. Bio-inspired thermal regulation achieved via fluid flow within a network of embedded vesicles is notably desirable for slender synthetic material systems. This far-reaching study-availing theory, numerics, and experiments-reveals a counter-intuitive yet fundamental property of vascular-based fluid-flow-engendered thermal regulation. For such thin systems, the mean surface temperature and the outlet temperature-consequently, the heat extracted by the flowing fluid (coolant)-are invariant under flow reversal (i.e. swapping the inlet and outlet). Despite markedly different temperature fields under flow reversal, our newfound invariance-a discovery-holds for anisotropic thermal conductivity, any inlet and ambient temperatures, transient and steady-state responses, irregular domains, and arbitrary internal vascular topologies, including those with branching. The reported configuration-independent result benefits thermal regulation designers. For instance, the flexibility in the coolant's inlet location eases coordination challenges between electronics and various delivery systems in microfluidic devices without compromising performance (e.g. soft implantable coolers for pain management). Last but not least, the invariance offers an innovative way to verify computer codes, especially when analytical solutions are unavailable for intricate domain and vascular configurations.

2.
Sci Rep ; 13(1): 267, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36609579

ABSTRACT

Microwave absorbing materials for high-temperature harsh environments are highly desirable for aerodynamically heated parts and engine combustion induced hot spots of aircrafts. This study reports ceramic composites with excellent and stable high-temperature microwave absorption in air, which are made of polymer-derived SiOC reinforced with core-shell nanophase structure of ZrB2/ZrO2. The fabricated ceramic composites have a crystallized t-ZrO2 interface between ZrB2 and SiOC domains. The ceramic composites exhibit stable dielectric properties, which are relatively insensitive to temperature change from room temperature to 900 °C. The return loss exceeds - 10 dB, especially between 28 and 40 GHz, at the elevated temperatures. The stable high-temperature electromagnetic (EM) absorption properties are attributed to the stable dielectric and electrical properties induced by the core-shell nanophase structure of ZrB2/ZrO2. Crystallized t-ZrO2 serve as nanoscale dielectric interfaces between ZrB2 and SiOC, which are favorable for EM wave introduction for enhancing polarization loss and absorption. Existence of t-ZrO2 interface also changes the temperature-dependent DC conductivity of ZrB2/SiOC ceramic composites when compared to that of ZrB2 and SiOC alone. Experimental results from thermomechanical, jet flow, thermal shock, and water vapor tests demonstrate that the developed ceramic composites have high stability in harsh environments, and can be used as high-temperature wide-band microwave absorbing structural materials.

3.
Nat Commun ; 13(1): 6511, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36316323

ABSTRACT

Natural processes continuously degrade a material's performance throughout its life cycle. An emerging class of synthetic self-healing polymers and composites possess property-retaining functions with the promise of longer lifetimes. But sustained in-service repair of structural fiber-reinforced composites remains unfulfilled due to material heterogeneity and thermodynamic barriers in commonly cross-linked polymer-matrix constituents. Overcoming these inherent challenges for mechanical self-recovery is vital to extend in-service operation and attain widespread adoption of such bioinspired structural materials. Here we transcend existing obstacles and report a fiber-composite capable of minute-scale and prolonged in situ healing - 100 cycles: an order of magnitude higher than prior studies. By 3D printing a mendable thermoplastic onto woven glass/carbon fiber reinforcement and co-laminating with electrically resistive heater interlayers, we achieve in situ thermal remending of internal delamination via dynamic bond re-association. Full fracture recovery occurs below the glass-transition temperature of the thermoset epoxy-matrix composite, thus preserving stiffness during and after repair. A discovery of chemically driven improvement in thermal remending of glass- over carbon-fiber composites is also revealed. The marked lifetime extension offered by this self-healing strategy mitigates costly maintenance, facilitates repair of difficult-to-access structures (e.g., wind-turbine blades), and reduces part replacement, thereby benefiting economy and environment.

4.
ACS Appl Mater Interfaces ; 13(11): 12709-12718, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33236879

ABSTRACT

Liquid metals adhere to most surfaces despite their high surface tension due to the presence of a native gallium oxide layer. The ability to change the shape of functional fluids within a three-dimensional (3D) printed part with respect to time is a type of four-dimensional printing, yet surface adhesion limits the ability to pump liquid metals in and out of cavities and channels without leaving residue. Rough surfaces prevent adhesion, but most methods to roughen surfaces are difficult or impossible to apply on the interior of parts. Here, we show that silica particles suspended in an appropriate solvent can be injected inside cavities to coat the walls. This technique creates a transparent, nanoscopically rough (10-100 nm scale) coating that prevents adhesion of liquid metals on various 3D printed plastics and commercial polymers. Liquid metals roll and even bounce off treated surfaces (the latter occurs even when dropped from heights as high as 70 cm). Moreover, the coating can be removed locally by laser ablation to create selective wetting regions for metal patterning on the exterior of plastics. To demonstrate the utility of the coating, liquid metals were dynamically actuated inside a 3D printed channel or chamber without pinning the oxide, thereby demonstrating electrical circuits that can be reconfigured repeatably.

5.
Nature ; 540(7633): 363-370, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27974778

ABSTRACT

The lifetime of man-made materials is controlled largely by the wear and tear of everyday use, environmental stress and unexpected damage, which ultimately lead to failure and disposal. Smart materials that mimic the ability of living systems to autonomously protect, report, heal and even regenerate in response to damage could increase the lifetime, safety and sustainability of many manufactured items. There are several approaches to achieving these functions using polymer-based materials, but making them work in highly variable, real-world situations is proving challenging.


Subject(s)
Biomimetic Materials/chemistry , Polymers/chemistry , Regeneration
7.
ACS Appl Mater Interfaces ; 4(2): 503-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22008224

ABSTRACT

When heated, poly(lactic acid) (PLA) fibers depolymerize in a controlled manner, making them potentially useful as sacrificial fibers for microchannel fabrication. Catalysts that increase PLA depolymerization rates are explored and methods to incorporate them into commercially available PLA fibers by a solvent mixture impregnating technique are tested. In the present study, the most active catalysts are identified that are capable of lowering the depolymerization temperature of modified PLA fibers by ca. 100 °C as compared to unmodified ones. Lower depolymerization temperatures allow PLA fibers to be removed from a fully cured epoxy thermoset resin without causing significant thermal damage to the epoxy. For 500 µm diameter PLA fibers, the optimized treatment involves soaking the fibers for 24 h in a solvent mixture containing 60% trifluoroethanol (TFE) and 40% H(2)O dispersed with 10 wt % tin(II) oxalate and subsequent air-drying of the fibers. PLA fibers treated with this procedure are completely removed when heated to 180 °C in vacuo for 20 h. The time evolution of catalytic depolymerization of PLA fiber is investigated by gel permeation chromatography (GPC). Channels fabricated by vaporization of sacrificial components (VaSC) are subsequently characterized by scanning electron microscopy (SEM) and X-ray microtomography (Micro CT) to show the presence of residual catalysts.


Subject(s)
Lactic Acid/chemistry , Polymers/chemistry , Temperature , Catalysis , Polyesters , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...