Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
J Anim Ecol ; 93(6): 676-690, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38525860

ABSTRACT

Differences among individuals within a population are ubiquitous. Those differences are known to affect the entire life cycle with important consequences for all demographic rates and outcomes. One source of among-individual phenotypic variation that has received little attention from a demographic perspective is animal personality, which is defined as consistent and heritable behavioural differences between individuals. While many studies have shown that individual variation in individual personality can generate individual differences in survival and reproductive rates, the impact of personality on all demographic rates and outcomes remains to be assessed empirically. Here, we used a unique, long-term, dataset coupling demography and personality of wandering albatross (Diomedea exulans) in the Crozet Archipelago and a comprehensive analysis based on a suite of approaches (capture-mark-recapture statistical models, Markov chains models and structured matrix population models). We assessed the effect of boldness on annual demographic rates (survival, breeding probability, breeding success), life-history outcomes (life expectancy, lifetime reproductive outcome, occupancy times), and an integrative demographic outcome (population growth rate). We found that boldness had little impact on female demographic rates, but was very likely associated with lower breeding probabilities in males. By integrating the effects of boldness over the entire life cycle, we found that bolder males had slightly lower lifetime reproductive success compared to shyer males. Indeed, bolder males spent a greater proportion of their lifetime as non-breeders, which suggests longer inter-breeding intervals due to higher reproductive allocation. Our results reveal that the link between boldness and demography is more complex than anticipated by the pace-of-life literature and highlight the importance of considering the entire life cycle with a comprehensive approach when assessing the role of personality on individual performance and demography.


Subject(s)
Reproduction , Animals , Male , Female , Population Dynamics , Personality , Birds/physiology , Life History Traits , Behavior, Animal
2.
Proc Natl Acad Sci U S A ; 120(42): e2218679120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37812719

ABSTRACT

The ways in which seabirds navigate over very large spatial scales remain poorly understood. While olfactory and visual information can provide guidance over short distances, their range is often limited to 100s km, far below the navigational capacity of wide-ranging animals such as albatrosses. Infrasound is a form of low-frequency sound that propagates for 1,000s km in the atmosphere. In marine habitats, its association with storms and ocean surface waves could in effect make it a useful cue for anticipating environmental conditions that favor or hinder flight or be associated with profitable foraging patches. However, behavioral responses of wild birds to infrasound remain untested. Here, we explored whether wandering albatrosses, Diomedea exulans, respond to microbarom infrasound at sea. We used Global Positioning System tracks of 89 free-ranging albatrosses in combination with acoustic modeling to investigate whether albatrosses preferentially orientate toward areas of 'loud' microbarom infrasound on their foraging trips. We found that in addition to responding to winds encountered in situ, albatrosses moved toward source regions associated with higher sound pressure levels. These findings suggest that albatrosses may be responding to long-range infrasonic cues. As albatrosses depend on winds and waves for soaring flight, infrasonic cues may help albatrosses to identify environmental conditions that allow them to energetically optimize flight over long distances. Our results shed light on one of the great unresolved mysteries in nature, navigation in seemingly featureless ocean environments.


Subject(s)
Birds , Cues , Animals , Birds/physiology , Wind , Smell , Sound
3.
Ecol Evol ; 13(7): e10259, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37404704

ABSTRACT

Urbanization has dramatically altered Earth's landscapes and changed a multitude of environmental factors. This has resulted in intense land-use change, and adverse consequences such as the urban heat island effect (UHI), noise pollution, and artificial light at night (ALAN). However, there is a lack of research on the combined effects of these environmental factors on life-history traits and fitness, and on how these interactions shape food resources and drive patterns of species persistence. Here, we systematically reviewed the literature and created a comprehensive framework of the mechanistic pathways by which urbanization affects fitness and thus favors certain species. We found that urbanization-induced changes in urban vegetation, habitat quality, spring temperature, resource availability, acoustic environment, nighttime light, and species behaviors (e.g., laying, foraging, and communicating) influence breeding choices, optimal time windows that reduce phenological mismatch, and breeding success. Insectivorous and omnivorous species that are especially sensitive to temperature often experience advanced laying behaviors and smaller clutch sizes in urban areas. By contrast, some granivorous and omnivorous species experience little difference in clutch size and number of fledglings because urban areas make it easier to access anthropogenic food resources and to avoid predation. Furthermore, the interactive effect of land-use change and UHI on species could be synergistic in locations where habitat loss and fragmentation are greatest and when extreme-hot weather events take place in urban areas. However, in some instances, UHI may mitigate the impact of land-use changes at local scales and provide suitable breeding conditions by shifting the environment to be more favorable for species' thermal limits and by extending the time window in which food resources are available in urban areas. As a result, we determined five broad directions for further research to highlight that urbanization provides a great opportunity to study environmental filtering processes and population dynamics.

4.
J Anim Ecol ; 92(9): 1730-1742, 2023 09.
Article in English | MEDLINE | ID: mdl-37365766

ABSTRACT

Behavioural plasticity can allow populations to adjust to environmental change when genetic evolution is too slow to keep pace. However, its constraints are not well understood. Personality is known to shape individual behaviour, but its relationship to behavioural plasticity is unclear. We studied the relationship between boldness and behavioural plasticity in response to wind conditions in wandering albatrosses (Diomedea exulans). We fitted multivariate hidden Markov models to an 11-year GPS dataset collected from 294 birds to examine whether the probability of transitioning between behavioural states (rest, prey search and travel) varied in response to wind, boldness and their interaction. We found that movement decisions varied with boldness, with bolder birds showing preferences for travel, and shyer birds showing preferences for search. For females, these effects depended on wind speed. In strong winds, which are optimal for movement, females increased time spent in travel, while in weaker winds, shyer individuals showed a slight preference for search, while bolder individuals maintained preference for travel. Our findings suggest that individual variation in behavioural plasticity may limit the capacity of bolder females to adjust to variable conditions and highlight the important role of behavioural plasticity in population responses to climate change.


Subject(s)
Feeding Behavior , Wind , Female , Animals , Feeding Behavior/physiology , Birds/physiology , Personality
5.
Proc Biol Sci ; 290(1990): 20222252, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36598019

ABSTRACT

Animals have to develop novel behaviours to adapt to anthropogenic activities or environmental changes. Fishing vessels constitute a recent feature that attracts albatrosses in large numbers. While they provide a valuable food source through offal and bait, they cause mortalities through bycatch, such that selection on vessel attraction will depend on the cost-benefit balance. We examine whether attraction to fishing and other vessels changes through the lifetime of great albatrosses, and show that attraction differed between age classes, sexes and personality. Juveniles encountered fewer vessels than adults, but also showed a lower attraction to vessels when encountered. Attraction rates, especially for fishing vessels, increased through immaturity to peak during adulthood, decreasing with old age. Shy females had lower attraction to vessels and shy males remained at vessels longer, suggesting that bolder individuals may outcompete shyer ones, with positive consequences for mass gain. These results suggest that attraction to vessels is a learned process, leading to an increase with age, and is not the result of preferential attraction to new objects by juveniles. Overall, our findings have important conservation implications as a result of potential strong differential selection on the risk of bycatch for age classes, personality types, populations and species.


Subject(s)
Fisheries , Hunting , Animals , Birds
6.
Ecol Evol ; 12(12): e9621, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36540077

ABSTRACT

Long-lived monogamous species gain long-term fitness benefits by equalizing effort during biparental care. For example, many seabird species coordinate care by matching foraging trip durations within pairs. Age affects coordination in some seabird species; however, the impact of other intrinsic traits, including personality, on potential intraspecific variation in coordination strength is less well understood. The impacts of pair members' intrinsic traits on trip duration and coordination strength were investigated using data from saltwater immersion loggers deployed on 71 pairs of wandering albatrosses Diomedea exulans. These were modeled against pair members' age, boldness, and their partner's previous trip duration. At the population level, the birds exhibited some coordination of parental care that was of equal strength during incubation and chick-brooding. However, there was low variation in coordination between pairs and coordination strength was unaffected by the birds' boldness or age in either breeding stage. Surprisingly, during incubation, foraging trip duration was mainly driven by partner traits, as birds which were paired to older and bolder partners took shorter trips. During chick-brooding, shorter foraging trips were associated with greater boldness in focal birds and their partners, but age had no effect. These results suggest that an individual's assessment of their partner's capacity or willingness to provide care may be a major driver of trip duration, thereby highlighting the importance of accounting for pair behavior when studying parental care strategies.

7.
Ecol Monogr ; 92(3): e1522, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36248260

ABSTRACT

Many animals form long-term monogamous pair bonds, and the disruption of a pair bond (through either divorce or widowhood) can have significant consequences for individual vital rates (survival, breeding, and breeding success probabilities) and life-history outcomes (lifetime reproductive success [LRS], life expectancy). Here, we investigated the causes and consequences of pair-bond disruption in wandering albatross (Diomedea exulans). State-of-the-art statistical and mathematical approaches were developed to estimate divorce and widowhood rates and their impacts on vital rates and life-history outcomes. In this population, females incur a higher mortality rate due to incidental fishery bycatch, so the population is male-skewed. Therefore, we first posited that males would show higher widowhood rates negatively correlated with fishing effort and females would have higher divorce rates because they have more mating opportunities. Furthermore, we expected that divorce could be an adaptive strategy, whereby individuals improved breeding success by breeding with a new partner of better quality. Finally, we posited that pair-bond disruptions could reduce survival and breeding probabilities owing to the cost of remating processes, with important consequences for life-history outcomes. As expected, we showed that males had higher widowhood rates than females and females had higher divorce rates in this male-skewed population. However, no correlation was found between fishing effort and male widowhood. Secondly, contrary to our expectation, we found that divorce was likely nonadaptive in this population. We propose that divorce in this population is caused by an intruder who outcompetes the original partner in line with the so-called forced divorce hypothesis. Furthermore, we found a 16.7% and 18.0% reduction in LRS only for divorced and widowed males, respectively, owing to missing breeding seasons after a pair-bond disruption. Finally, we found that divorced individuals were more likely to divorce again, but whether this is related to specific individual characteristics remains an important area of investigation.

8.
Biol Lett ; 18(9): 20220301, 2022 09.
Article in English | MEDLINE | ID: mdl-36099936

ABSTRACT

Personality predicts divorce rates in humans, yet how personality traits affect divorce in wild animals remains largely unknown. In a male-skewed population of wandering albatross (Diomedea exulans), we showed that personality predicts divorce; shyer males exhibited higher divorce rates than bolder males but no such relationship was found in females. We propose that divorce may be caused by the intrusion of male competitors and shyer males divorce more often because of their avoidance of territorial aggression, while females have easier access to mates regardless of their personality. Thus, personality may have important implications for the dynamics of social relationships.


Subject(s)
Birds , Divorce , Animals , Female , Humans , Male , Personality
9.
Mov Ecol ; 10(1): 26, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35614458

ABSTRACT

Movement is fundamental to life, shaping population dynamics, biodiversity patterns, and ecosystem structure. In 2008, the movement ecology framework (MEF Nathan et al. in PNAS 105(49):19052-19059, 2008) introduced an integrative theory of organismal movement-linking internal state, motion capacity, and navigation capacity to external factors-which has been recognized as a milestone in the field. Since then, the study of movement experienced a technological boom, which provided massive quantities of tracking data of both animal and human movement globally and at ever finer spatio-temporal resolutions. In this work, we provide a quantitative assessment of the state of research within the MEF, focusing on animal movement, including humans and invertebrates, and excluding movement of plants and microorganisms. Using a text mining approach, we digitally scanned the contents of [Formula: see text] papers from 2009 to 2018 available online, identified tools and methods used, and assessed linkages between all components of the MEF. Over the past decade, the publication rate has increased considerably, along with major technological changes, such as an increased use of GPS devices and accelerometers and a majority of studies now using the R software environment for statistical computing. However, animal movement research still largely focuses on the effect of environmental factors on movement, with motion and navigation continuing to receive little attention. A search of topics based on words featured in abstracts revealed a clustering of papers among marine and terrestrial realms, as well as applications and methods across taxa. We discuss the potential for technological and methodological advances in the field to lead to more integrated and interdisciplinary research and an increased exploration of key movement processes such as navigation, as well as the evolutionary, physiological, and life-history consequences of movement.

10.
Ecol Lett ; 25(5): 1139-1151, 2022 May.
Article in English | MEDLINE | ID: mdl-35235709

ABSTRACT

Life-history strategies differ with respect to investment in current versus 'future' reproduction, but when is this future? Under the novel 'temporality in reproductive investment hypothesis', we postulate variation should exist in the time frame over which reproductive costs are paid. Slow-paced individuals should pay reproductive costs over short (e.g. inter-annual) time scales to prevent reproductive costs accumulating, whereas fast-paced individuals should allow costs to accumulate (i.e. senescence). Using Fourier transforms, we quantify adjustments in clutch size with age, across four populations of blue tits (Cyanistes caeruleus). Fast populations had more prevalent and stronger long-term changes in reproductive investment, whereas slower populations had more prevalent short-term adjustments. Inter-annual environmental variation partly accounted for short-, but not long-term changes in reproductive investment. Our study reveals individuals differ in when they pay the cost of reproduction and that failure to partition this variation across different temporal scales and environments could underestimate reproductive trade-offs.


Subject(s)
Life History Traits , Passeriformes , Animals , Clutch Size , Humans , Reproduction
11.
Sci Rep ; 12(1): 5251, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35347167

ABSTRACT

Birds exhibit wide variation in their use of aquatic environments, on a spectrum from entirely terrestrial, through amphibious, to highly aquatic. Although there are limited empirical data on hearing sensitivity of birds underwater, mounting evidence indicates that diving birds detect and respond to sound underwater, suggesting that some modifications of the ear may assist foraging or other behaviors below the surface. In air, the tympanic middle ear acts as an impedance matcher that increases sound pressure and decreases sound vibration velocity between the outside air and the inner ear. Underwater, the impedance-matching task is reversed and the ear is exposed to high hydrostatic pressures. Using micro- and nano-CT (computerized tomography) scans of bird ears in 127 species across 26 taxonomic orders, we measured a suite of morphological traits of importance to aerial and aquatic hearing to test predictions relating to impedance-matching in birds with distinct aquatic lifestyles, while accounting for allometry and phylogeny. Birds that engage in underwater pursuit and deep diving showed the greatest differences in ear structure relative to terrestrial species. In these heavily modified ears, the size of the input areas of both the tympanic membrane and the columella footplate of the middle ear were reduced. Underwater pursuit and diving birds also typically had a shorter extrastapedius, a reduced cranial air volume and connectivity and several modifications in line with reversals of low-to-high impedance-matching. The results confirm adaptations of the middle ear to aquatic lifestyles in multiple independent bird lineages, likely facilitating hearing underwater and baroprotection, while potentially constraining the sensitivity of aerial hearing.


Subject(s)
Birds , Ear, Middle , Adaptation, Physiological , Animals , Ear , Ear, Middle/anatomy & histology , Hearing
12.
Ecol Evol ; 12(1): e8457, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35127010

ABSTRACT

Selecting foraging habitat is a fundamental behavior in the life of organisms as it directly links resource acquisition to fitness. Differences in habitat selection among individuals may arise from several intrinsic and extrinsic factors, and yet, their interaction has been given little attention in the study of wild populations. We combine sex, body size, and boldness to explain individual differences in the seasonal foraging habitat selection of southern elephant seals (Mirounga leonina) from the Kerguelen Archipelago. We hypothesize that habitat selection is linked to the trade-off between resource acquisition and risk, and that individuals differ in their position along this trade-off because of differences in reproductive strategies, life stages, and metabolic requirements. Before the post-molt foraging trip, we used a novel object approach test to quantify the boldness of 28 subadult and adult females and 42 subadult males and equipped them with data loggers to track their movements at sea. Subadult males selected neritic and oceanic habitats, whereas females mostly selected less productive oceanic habitats. Both sexes showed a seasonal shift from Antarctic habitats in the south in the summer to the free of ice subantarctic and subtropical habitats in the north in the winter. Males avoided oceanic habitats and selected more productive neritic and Antarctic habitats with body size mostly in the winter. Bolder males selected northern warmer waters in winter, while shyer ones selected the Kerguelen plateau and southern colder oceanic waters. Bolder females selected the Kerguelen plateau in the summer when prey profitability is assumed to be the highest. This study not only provides new insights into the spatiotemporal foraging ecology of elephant seals in relation to personality but also emphasizes the relevance of combining several intrinsic and extrinsic factors in understanding among-individual variation in space use essential in wildlife management and conservation.

13.
PLoS One ; 16(12): e0260812, 2021.
Article in English | MEDLINE | ID: mdl-34914747

ABSTRACT

Understanding the points in a species breeding cycle when they are most vulnerable to environmental fluctuations is key to understanding interannual demography and guiding effective conservation and management. Seabirds represent one of the most threatened groups of birds in the world, and climate change and severe weather is a prominent and increasing threat to this group. We used a multi-state capture-recapture model to examine how the demographic rates of a long-lived trans-oceanic migrant seabird, the Manx shearwater Puffinus puffinus, are influenced by environmental conditions experienced at different stages of the annual breeding cycle and whether these relationships vary with an individual's breeding state in the previous year (i.e., successful breeder, failed breeder and non-breeder). Our results imply that populations of Manx shearwaters are comprised of individuals with different demographic profiles, whereby more successful reproduction is associated with higher rates of survival and breeding propensity. However, we found that all birds experienced the same negative relationship between rates of survival and wind force during the breeding season, indicating a cost of reproduction (or central place constraint for non-breeders) during years with severe weather conditions. We also found that environmental effects differentially influence the breeding propensity of individuals in different breeding states. This suggests individual spatio-temporal variation in habitat use during the annual cycle, such that climate change could alter the frequency that individuals with different demographic profiles breed thereby driving a complex and less predictable population response. More broadly, our study highlights the importance of considering individual-level factors when examining population demography and predicting how species may respond to climate change.


Subject(s)
Animal Migration/physiology , Breeding , Climate Change , Demography/statistics & numerical data , Ecosystem , Reproduction , Seasons , Animals , Birds , Oceans and Seas
14.
Sci Rep ; 11(1): 22109, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764330

ABSTRACT

In colonially breeding marine predators, individual movements and colonial segregation are influenced by seascape characteristics. Tidewater glacier fronts are important features of the Arctic seascape and are often described as foraging hotspots. Albeit their documented importance for wildlife, little is known about their structuring effect on Arctic predator movements and space use. In this study, we tested the hypothesis that tidewater glacier fronts can influence marine bird foraging patterns and drive spatial segregation among adjacent colonies. We analysed movements of black-legged kittiwakes (Rissa tridactyla) in a glacial fjord by tracking breeding individuals from five colonies. Although breeding kittiwakes were observed to travel up to ca. 280 km from the colony, individuals were more likely to use glacier fronts located closer to their colony and rarely used glacier fronts located farther away than 18 km. Such variation in the use of glacier fronts created fine-scale spatial segregation among the four closest (ca. 7 km distance on average) kittiwake colonies. Overall, our results support the hypothesis that spatially predictable foraging patches like glacier fronts can have strong structuring effects on predator movements and can modulate the magnitude of intercolonial spatial segregation in central-place foragers.


Subject(s)
Birds/physiology , Charadriiformes/physiology , Animals , Arctic Regions , Ecosystem , Estuaries , Feeding Behavior/physiology , Ice Cover , Seasons
15.
J Anim Ecol ; 90(12): 2875-2887, 2021 12.
Article in English | MEDLINE | ID: mdl-34492121

ABSTRACT

Individual specialisations in behaviour are predicted to arise where divergence benefits fitness. Such specialisations are more likely in heterogeneous environments where there is both greater ecological opportunity and competition-driven frequency dependent selection. Such an effect could explain observed differences in rates of individual specialisation in habitat selection, as it offers individuals an opportunity to select for habitat types that maximise resource gain while minimising competition; however, this mechanism has not been tested before. Here, we use habitat selection functions to quantify individual specialisations while foraging by black-legged kittiwakes Rissa tridactyla, a marine top predator, at 15 colonies around the United Kingdom and Ireland, along a gradient of environmental heterogeneity. We find support for the hypothesis that individual specialisations in habitat selection while foraging are more prevalent in heterogeneous environments. This trend was significant across multiple dynamic habitat variables that change over short time-scales and did not arise through site fidelity, which highlights the importance of environmental processes in facilitating behavioural adaptation by predators. Individual differences may drive evolutionary processes, and therefore these results suggest that there is broad scope for the degree of environmental heterogeneity to determine current and future population, species and community dynamics.


Subject(s)
Charadriiformes , Ecosystem , Animals , United Kingdom
16.
Glob Chang Biol ; 27(19): 4564-4574, 2021 10.
Article in English | MEDLINE | ID: mdl-34089551

ABSTRACT

The ability of individuals and populations to adapt to a changing climate is a key determinant of population dynamics. While changes in mean behaviour are well studied, changes in trait variance have been largely ignored, despite being assumed to be crucial for adapting to a changing environment. As the ability to acquire resources is essential to both reproduction and survival, changes in behaviours that maximize resource acquisition should be under selection. Here, using foraging trip duration data collected over 7 years on black-browed albatrosses (Thalassarche melanophris) on the Kerguelen Islands in the southern Indian Ocean, we examined the importance of changes in the mean and variance in foraging behaviour, and the associated effects on fitness, in response to the El Niño Southern Oscillation (ENSO). Using double hierarchical models, we found no evidence that individuals change their mean foraging trip duration in response to a changing environment, but found strong evidence of changes in variance. Younger birds showed greater variability in foraging trip duration in poor conditions as did birds with higher fitness. However, during brooding, birds showed greater variability in foraging behaviour under good conditions, suggesting that optimal conditions allow the alteration between chick provisioning and self-maintenance trips. We found weak correlations between sea surface temperature and the ENSO, but stronger links with sea-level pressure. We suggest that variability in behavioural traits affecting resource acquisition is under selection and offers a mechanism by which individuals can adapt to a changing climate. Studies which look only at effects on mean behaviour may underestimate the effects of climate change and fail to consider variance in traits as a key evolutionary force.


Subject(s)
Birds , Reproduction , Animals , Climate Change , El Nino-Southern Oscillation , Humans , Population Dynamics
17.
Proc Biol Sci ; 287(1940): 20202381, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33290675

ABSTRACT

Carry-over effects describe the phenomenon whereby an animal's previous conditions influence its subsequent performance. Carry-over effects are unlikely to affect individuals uniformly, but the factors modulating their strength are poorly known. Variation in the strength of carry-over effects may reflect individual differences in pace-of-life: slow-paced, shyly behaved individuals are thought to favour an allocation to self-maintenance over current reproduction, compared to their fast-paced, boldly behaved conspecifics (the pace-of-life syndrome hypothesis). Therefore, detectable carry-over effects on breeding should be weaker in bolder individuals, as they should maintain an allocation to reproduction irrespective of previous conditions, while shy individuals should experience stronger carry-over effects. We tested this prediction in black-legged kittiwakes breeding in Svalbard. Using miniature biologging devices, we measured non-breeding activity of kittiwakes and monitored their subsequent breeding performance. We report a number of negative carry-over effects of non-breeding activity on breeding, which were generally stronger in shyer individuals: more active winters were followed by later breeding phenology and poorer breeding performance in shy birds, but these effects were weaker or undetected in bolder individuals. Our study quantifies individual variability in the strength of carry-over effects on breeding and provides a mechanism explaining widespread differences in individual reproductive success.


Subject(s)
Animal Migration , Behavior, Animal , Charadriiformes , Reproduction , Animals , Birds , Breeding , Female , Male , Personality , Seasons , Svalbard
18.
J Anim Ecol ; 89(8): 1811-1823, 2020 08.
Article in English | MEDLINE | ID: mdl-32557603

ABSTRACT

In a highly dynamic airspace, flying animals are predicted to adjust foraging behaviour to variable wind conditions to minimize movement costs. Sexual size dimorphism is widespread in wild animal populations, and for large soaring birds which rely on favourable winds for energy-efficient flight, differences in morphology, wing loading and associated flight capabilities may lead males and females to respond differently to wind. However, the interaction between wind and sex has not been comprehensively tested. We investigated, in a large sexually dimorphic seabird which predominantly uses dynamic soaring flight, whether flight decisions are modulated to variation in winds over extended foraging trips, and whether males and females differ. Using GPS loggers we tracked 385 incubation foraging trips of wandering albatrosses Diomedea exulans, for which males are c. 20% larger than females, from two major populations (Crozet and South Georgia). Hidden Markov models were used to characterize behavioural states-directed flight, area-restricted search (ARS) and resting-and model the probability of transitioning between states in response to wind speed and relative direction, and sex. Wind speed and relative direction were important predictors of state transitioning. Birds were much more likely to take off (i.e. switch from rest to flight) in stronger headwinds, and as wind speeds increased, to be in directed flight rather than ARS. Males from Crozet but not South Georgia experienced stronger winds than females, and males from both populations were more likely to take-off in windier conditions. Albatrosses appear to deploy an energy-saving strategy by modulating taking-off, their most energetically expensive behaviour, to favourable wind conditions. The behaviour of males, which have higher wing loading requiring faster speeds for gliding flight, was influenced to a greater degree by wind than females. As such, our results indicate that variation in flight performance drives sex differences in time-activity budgets and may lead the sexes to exploit regions with different wind regimes.


Subject(s)
Flight, Animal , Wind , Animals , Birds , Feeding Behavior , Female , Male , Wings, Animal
19.
Ecol Lett ; 23(7): 1085-1096, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32314533

ABSTRACT

When the consequences of sociality differ depending on the state of individual animals and the experienced environment, individuals may benefit from altering their social behaviours in a context-dependent manner. Thus, to fully address the hypotheses about the role of social associations it is imperative to consider the multidimensional nature of sociality by explicitly examining social associations across multiple scales and contexts. We simultaneously recorded > 8000 associations from 85% of breeding individuals from a colony of Australasian gannets (Morus serrator) over a 2-week period, and examined gregariousness across four foraging states using multilayer social network analysis. We found that social associations varied in a context-dependent manner, highlighting that social associations are most prevalent during foraging (local enhancement) and in regions expected to provide clustered resources. We also provide evidence of individual consistency in gregariousness, but flexibility in social associates, demonstrating that individuals can adjust their social behaviours to match experienced conditions.


Subject(s)
Birds , Social Behavior , Animals , Breeding
20.
Biol Rev Camb Philos Soc ; 95(4): 1036-1054, 2020 08.
Article in English | MEDLINE | ID: mdl-32237036

ABSTRACT

The perception of airborne infrasound (sounds below 20 Hz, inaudible to humans except at very high levels) has been documented in a handful of mammals and birds. While animals that produce vocalizations with infrasonic components (e.g. elephants) present conspicuous examples of potential use of infrasound in the context of communication, the extent to which airborne infrasound perception exists among terrestrial animals is unclear. Given that most infrasound in the environment arises from geophysical sources, many of which could be ecologically relevant, communication might not be the only use of infrasound by animals. Therefore, infrasound perception could be more common than currently realized. At least three bird species, each of which do not communicate using infrasound, are capable of detecting infrasound, but the associated auditory mechanisms are not well understood. Here we combine an evaluation of hearing measurements with anatomical observations to propose and evaluate hypotheses supporting avian infrasound detection. Environmental infrasound is mixed with non-acoustic pressure fluctuations that also occur at infrasonic frequencies. The ear can detect such non-acoustic pressure perturbations and therefore, distinguishing responses to infrasound from responses to non-acoustic perturbations presents a great challenge. Our review shows that infrasound could stimulate the ear through the middle ear (tympanic) route and by extratympanic routes bypassing the middle ear. While vibration velocities of the middle ear decline towards infrasonic frequencies, whole-body vibrations - which are normally much lower amplitude than that those of the middle ear in the 'audible' range (i.e. >20 Hz) - do not exhibit a similar decline and therefore may reach vibration magnitudes comparable to the middle ear at infrasonic frequencies. Low stiffness in the middle and inner ear is expected to aid infrasound transmission. In the middle ear, this could be achieved by large air cavities in the skull connected to the middle ear and low stiffness of middle ear structures; in the inner ear, the stiffness of round windows and cochlear partitions are key factors. Within the inner ear, the sizes of the helicotrema and cochlear aqueduct are expected to play important roles in shunting low-frequency vibrations away from low-frequency hair-cell sensors in the cochlea. The basilar papilla, the auditory organ in birds, responds to infrasound in some species, and in pigeons, infrasonic-sensitive neurons were traced back to the apical, abneural end of the basilar papilla. Vestibular organs and the paratympanic organ, a hair cell organ outside of the inner ear, are additional untested candidates for infrasound detection in birds. In summary, this review brings together evidence to create a hypothetical framework for infrasonic hearing mechanisms in birds and other animals.


Subject(s)
Audiometry/veterinary , Birds/physiology , Hearing/physiology , Pitch Perception/physiology , Vocalization, Animal/physiology , Animals , Behavior, Animal , Birds/anatomy & histology , Ear Canal/anatomy & histology , Ear Canal/physiology , Ear, Inner/anatomy & histology , Ear, Inner/physiology , Ear, Middle/anatomy & histology , Ear, Middle/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...