Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 5(6): 172483, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30110448

ABSTRACT

Designing experiments on social learning using an untested behaviour or species requires baseline knowledge of how the animals will perform. We conducted a pilot study of a procedure for rapidly testing social learning in the highly social common vampire bat (Desmodus rotundus) using a simple maze. To create demonstrators, we allowed captive bats to learn to exit a three-dimensional maze, which reunited them with their colony as a reward. We then filmed naive bats in the same maze, comparing their ability to exit the maze before, during and after the addition of a trained demonstrator. The presence of a demonstrator increased the exit rates of naive bats, presumably by attracting the attention of the naive bats to the maze exit. Four of the five naive bats that exited in the presence of a demonstrator retained the ability to exit without the demonstrator. No naive bat exited during trials without a potential demonstrator present. This experimental procedure appears to be a promising approach for efficient tests of social learning in vampire bats because maze difficulty can be manipulated to adjust learning rates and each trial requires only 15 min.

2.
Sci Adv ; 4(3): eaaq0579, 2018 03.
Article in English | MEDLINE | ID: mdl-29568801

ABSTRACT

Learning from others allows individuals to adapt rapidly to environmental change. Although conspecifics tend to be reliable models, heterospecifics with similar resource requirements may be suitable surrogates when conspecifics are few or unfamiliar with recent changes in resource availability. We tested whether Trachops cirrhosus, a gleaning bat that localizes prey using their mating calls, can learn about novel prey from conspecifics and the sympatric bat Lophostoma silvicolum. Specifically, we compared the rate for naïve T. cirrhosus to learn an unfamiliar tone from either a trained conspecific or heterospecific alone through trial and error or through social facilitation. T. cirrhosus learned this novel cue from L. silvicolum as quickly as from conspecifics. This is the first demonstration of social learning of a novel acoustic cue in bats and suggests that heterospecific learning may occur in nature. We propose that auditory-based social learning may help bats learn about unfamiliar prey and facilitate their adaptive radiation.


Subject(s)
Chiroptera/physiology , Predatory Behavior/physiology , Acoustics , Animals , Species Specificity , Vocalization, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...