Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 12: 745959, 2021.
Article in English | MEDLINE | ID: mdl-34803913

ABSTRACT

Background: Prolonged or unaccustomed eccentric exercise may cause muscle damage and depending from its extent, this event negatively affects physical performance. Objectives: The aim of the present investigation was to evaluate, in humans, the effect of the flavonoid quercetin on circulating levels of the anabolic insulin-like growth factor 1 (IGF-I) and insulin-like growth factor 2 (IGF-II), produced during the recovery period after an eccentric-induced muscle damage (EIMD). Methods: A randomized, double-blind, crossover study has been performed; twelve young men ingested quercetin (1 g/day) or placebo for 14 days and then underwent an eccentric-induced muscle damaging protocol. Blood samples were collected, and cell damage markers [creatine kinase (CK), lactate dehydrogenase (LDH) and myoglobin (Mb)], the inflammatory responsive interleukin 6 (IL-6), IGF-I and IGF-II levels were evaluated before the exercise and at different recovery times from 24 hours to 7 days after EIMD. Results: We found that, in placebo treatment the increase in IGF-I (72 h) preceded IGF-II increase (7 d). After Q supplementation there was a more marked increase in IGF-I levels and notably, the IGF-II peak was found earlier, compared to placebo, at the same time of IGF-I (72 h). Quercetin significantly reduced plasma markers of cell damage [CK (p<0.005), LDH (p<0.001) and Mb (p<0.05)] and the interleukin 6 level [IL-6 (p<0.05)] during recovery period following EIMD compared to placebo. Conclusions: Our data are encouraging about the use of quercetin as dietary supplementation strategy to adopt in order to mitigate and promote a faster recovery after eccentric exercise as suggested by the increase in plasma levels of the anabolic factors IGF-I and IGF-II.


Subject(s)
Exercise/physiology , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor I/metabolism , Quercetin/pharmacology , Adolescent , Adult , Cross-Over Studies , Double-Blind Method , Humans , Italy , Male , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Range of Motion, Articular/drug effects , Range of Motion, Articular/physiology , Young Adult
2.
Nutrients ; 12(9)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957571

ABSTRACT

This study was aimed at investigating whether quercetin (Q) may improve the recovery of neuromuscular function and biochemical parameters in the 7 days following an eccentric exercise-induced muscle damage (EEIMD). Sixteen men (25.9 ± 3.3 y) ingested Q (1000 mg/day) or placebo (PLA) for 14 days following a double-blind crossover study design. A neuromuscular (NM) test was performed pre-post, 24 h, 48 h, 72 h, 96 h and 7 days after an intense eccentric exercise. The force-velocity relationship of the elbow flexor muscles and their maximal voluntary isometric contraction (MVIC) were recorded simultaneously to the electromyographic signals (EMG). Pain, joint angle, arm circumference, plasma creatine kinase (CK) and lactate-dehydrogenase (LDH) were also assessed. The results showed that Q supplementation significantly attenuated the strength loss compared to PLA. During the recovery, force-velocity relationship and mean fibers conduction velocity (MFCV) persisted significantly less when participants consumed PLA rather than Q, especially at the highest angular velocities (p < 0.02). A greater increase in biomarkers of damage was also evident in PLA with respect to Q. Q supplementation for 14 days seems able to ameliorate the recovery of eccentric exercise-induced weakness, neuromuscular function impairment and biochemical parameters increase probably due to its strong anti-inflammatory and antioxidant action.


Subject(s)
Antioxidants/pharmacology , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Quercetin/pharmacology , Recovery of Function/drug effects , Adult , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Humans , Isometric Contraction/drug effects , Male , Young Adult
3.
Nutrients ; 11(1)2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30669587

ABSTRACT

The aim of the present investigation was to test the hypothesis that quercetin (Q) may prevent the strength loss and neuromuscular impairment associated with eccentric exercise-induced muscle damage (EEIMD). Twelve young men (26.1 ± 3.1 years) ingested either Q (1000 mg/day) or placebo (PLA) for 14 days using a randomized, double-blind, crossover study design. Participants completed a comprehensive neuromuscular (NM) evaluation before, during and after an eccentric protocol able to induce a severe muscle damage (10 sets of 10 maximal lengthening contractions). The NM evaluation comprised maximal voluntary isometric contraction (MVIC) and force⁻velocity relationship assessments with simultaneous recording of electromyographic signals (EMG) from the elbow flexor muscles. Soreness, resting arm angle, arm circumference, plasma creatine kinase (CK) and lactate dehydrogenase (LDH) were also assessed. Q supplementation significantly increased the isometric strength recorded during MVIC compared to baseline (+4.7%, p < 0.05). Moreover, the torque and muscle fiber conduction velocity (MFCV) decay recorded during the eccentric exercise was significant lower in Q compared to PLA. Immediately after the EEIMD, isometric strength, the force⁻velocity relationship and MFCV were significantly lower when participants were given PLA rather than Q. Fourteen days of Q supplementation seems able to attenuate the severity of muscle weakness caused by eccentric-induced myofibrillar disruption and sarcolemmal action potential propagation impairment.


Subject(s)
Dietary Supplements , Exercise/physiology , Isometric Contraction/drug effects , Muscle Strength/drug effects , Muscle Weakness/prevention & control , Muscle, Skeletal/drug effects , Quercetin/therapeutic use , Adult , Antioxidants/pharmacology , Antioxidants/therapeutic use , Arm , Creatine Kinase/blood , Cross-Over Studies , Double-Blind Method , Elbow Joint , Electromyography/methods , Humans , L-Lactate Dehydrogenase/blood , Male , Muscle Fibers, Skeletal/drug effects , Muscle Strength/physiology , Muscle Weakness/etiology , Muscle Weakness/physiopathology , Muscle, Skeletal/cytology , Muscle, Skeletal/physiopathology , Myalgia , Myofibrils/drug effects , Quercetin/pharmacology , Resistance Training , Young Adult
4.
Sports (Basel) ; 6(4)2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30441819

ABSTRACT

The aim of the present study was to test the effectiveness of carbohydrate (CHO) feeding supplemented every 2.5-km, as in official races, on the performance, rating of perceived exertion (RPE), and glycaemia during a 10-km intermittent training workout in elite open-water swimmers. A randomized crossover design was used. Participants completed two 10-km intermittent training sessions (20 × 500-m). The relative velocity was expressed in percentage of a single 500-m. Glycaemia was monitored by continuous glucose monitoring. Participants had to ingest either 1 L of tap water (WAT; 0.50 L·h-1) or 120 g of CHO in the form of 8% solution (60 g·h-1). The 15-point RPE scale was used during the trials. A two-way ANOVA for repeated measures was performed (p < 0.05). The relative velocity of each 500-m was not significantly different between the two trials. No significant differences emerged in the relative velocity of the last 500-m between trials. Average RPE was not statistically different between the two trials (11 ± 3 in WAT and 12 ± 3 in CHO). In the last 500-m, glycaemia was significantly higher in the CHO trial (5.92 ± 0.47 mmol·L-1 in CHO; 5.61 ± 0.61 mmol·L-1 in WAT). CHO ingestion did not improve performance or affect RPE during a 10-km intermittent training in elite open-water swimmers.

5.
Nutr Res ; 50: 73-81, 2018 02.
Article in English | MEDLINE | ID: mdl-29540274

ABSTRACT

The polyphenolic flavonoid quercetin has been shown to be a powerful antioxidant, in vitro and in murine models. However, its effect on redox status has been poorly examined in humans, particularly in combination with strenuous exercise. We hypothesized that quercetin supplementation would beneficially affect redox homeostasis in healthy individuals undergoing eccentric exercise. To test this hypothesis, the effects of chronic consumption of quercetin on glutathione system (reduced, oxidized, and reduced to oxidized glutathione ratio), oxidative damage [thiobarbituric acid reactive substances (TBARs)], antioxidant enzymatic network (catalase, glutathione peroxidase, superoxide dismutase) and resistance to lysis, were investigated in erythrocytes, a traditional model widely used to study the effects of oxidative stress as well as the protective effects of antioxidants. In a two weeks controlled, randomized, crossover, intervention trial, 14 individuals ingested 2 caps (1 g/d) of quercetin or placebo. Blood samples were collected before, after 2 weeks of supplementation and after a bout of eccentric exercise. Quercetin, reduced significantly erythrocytes lipid peroxidation levels and the susceptibility to hemolysis induced by the free radical generator AAPH, while no differences in antioxidant enzyme activities and glutathione homeostasis were found between the two groups. After a single bout of eccentric exercise, quercetin supplementation improved redox status as assessed by reduced/oxidized glutathione ratio analysis and reduced TBARs levels both in erythrocytes and plasma. In conclusion, our study provides evidences that chronic quercetin supplementation has antioxidant potential prior to and after a strenuous eccentric exercise thus making the erythrocytes capable to better cope with an oxidative insult.


Subject(s)
Antioxidants/pharmacology , Erythrocytes/drug effects , Exercise/physiology , Hemolysis/drug effects , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Quercetin/pharmacology , Adult , Antioxidants/metabolism , Catalase/metabolism , Dietary Supplements , Erythrocytes/metabolism , Glutathione/metabolism , Humans , Male , Oxidation-Reduction , Plant Extracts/pharmacology , Reference Values , Rest/physiology , Superoxide Dismutase/metabolism , Young Adult
6.
Eur J Appl Physiol ; 118(5): 1021-1031, 2018 May.
Article in English | MEDLINE | ID: mdl-29511920

ABSTRACT

PURPOSE: To examine the effect of acute quercetin (Q) ingestion on neuromuscular function, biomarkers of muscle damage, and rate of perceived exertion (RPE) in response to an acute bout of resistance training. METHODS: 10 young men (22.1 ± 1.8 years, 24.1 ± 3.1 BMI) participated in a randomized, double-blind, crossover study. Subjects consumed Q (1 g/day) or placebo (PLA) 3 h prior to a resistance training session which consisted of 3 sets of 8 repetitions at 80% of the one repetition maximum (1RM) completed bilaterally for eight different resistance exercises. Electromyographic (EMG) signals were recorded from the knee extensor muscles during maximal isometric (MVIC) and isokinetic voluntary contractions, and during an isometric fatiguing test. Mechanical and EMG signals, biomarkers of cell damage, and RPE score were measured PRE, immediately POST, and 24 h (blood indices only) following the resistance exercise. RESULTS: After a single dose of Q, the torque-velocity curve of knee extensors was enhanced and after the resistance exercise, subjects showed a lower MVIC reduction (Q: 0.91 ± 6.10%, PLA: 8.66 ± 5.08%) with a greater rate of torque development (+ 10.6%, p < 0.005) and neuromuscular efficiency ratio (+ 28.2%, p < 0.005). Total volume of the resistance exercises was significantly greater in Q (1691.10 ± 376.71 kg rep) compared to PLA (1663.65 ± 378.85 kg rep) (p < 0.05) with a comparable RPE score. No significant differences were found in blood marker between treatments. CONCLUSIONS: The acute ingestion of Q may enhance the neuromuscular performance during and after a resistance training session.


Subject(s)
Antioxidants/pharmacology , Muscle, Skeletal/drug effects , Quercetin/pharmacology , Resistance Training , Antioxidants/administration & dosage , Antioxidants/therapeutic use , Humans , Male , Muscle Fatigue , Muscle Strength , Muscle, Skeletal/physiology , Myalgia/prevention & control , Quercetin/administration & dosage , Quercetin/therapeutic use , Young Adult
7.
Int J Sports Physiol Perform ; 12(8): 1031-1038, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27967281

ABSTRACT

PURPOSE: To determine whether repeated carbohydrate (CHO) mouth rinsing would improve neuromuscular performance during high-intensity fatiguing contractions. METHODS: Eighteen young men (age 26.1 ± 5.0 y, BMI 22.9 ± 1.9) performed 3 maximal voluntary isometric contractions (MVICPRE). Immediately after, they completed 10-second mouth rinse with 6.4% maltodextrin solution (MAL), 7.1% glucose solution (GLU), water (W), artificially sweetened solution (PLA), or a control trial with no rinse (CON) in a crossover protocol. Subjects performed 5 sets of 30 isokinetic fatiguing contractions at 180°/s, and an MVICPOST with their elbow flexors was performed after each mouth rinse. Mechanical and electromyographic (EMG) signals were recorded from the biceps brachii and parameters of interest analyzed. RESULTS: When rinsing the mouth with a solution containing CHO, independently of the sweetness, isokinetic performance was enhanced as shown by the greater total work achieved in comparison with CON. The decay of torque and mean fiber-conduction velocity (MFCV) recorded at the end of the fatiguing task was lower when rinsing the mouth with GLU than with CON. The torque recorded during the MVICPOST was greater with CHO with respect to CON, and this was associated to a lower decay of MFCV. CONCLUSIONS: CHO mouth rinse counteracts fatigue-induced decline in neuromuscular performance, supporting the notion that CHO rinse may activate positive afferent signals able to modify motor output. Repeated mouth rinsing with sweet and nonsweet CHO-containing solutions can improve neuromuscular performance during an isokinetic intermittent fatiguing task.


Subject(s)
Dietary Carbohydrates/administration & dosage , Exercise/physiology , Mouthwashes/administration & dosage , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Physical Endurance/physiology , Sweetening Agents/administration & dosage , Adult , Cross-Over Studies , Electromyography , Exercise Test/methods , Glucose/administration & dosage , Humans , Isometric Contraction/physiology , Male , Maltose/administration & dosage , Muscle, Skeletal/innervation , Perception/physiology , Physical Exertion/physiology , Polysaccharides/administration & dosage
8.
Eur J Appl Physiol ; 116(10): 2035-43, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27577950

ABSTRACT

PURPOSE: This study aimed to evaluate the accuracy of a novel approach for predicting the one-repetition maximum (1RM). The prediction is based on the force-velocity and load-velocity relationships determined from measured force and velocity data collected during resistance-training exercises with incremental submaximal loads. 1RM was determined as the load corresponding to the intersection of these two curves, where the gravitational force exceeds the force that the subject can exert. METHODS: The proposed force-velocity-based method (FVM) was tested on 37 participants (23.9 ± 3.1 year; BMI 23.44 ± 2.45) with no specific resistance-training experience, and the predicted 1RM was compared to that achieved using a direct method (DM) in chest-press (CP) and leg-press (LP) exercises. RESULTS: The mean 1RM in CP was 99.5 kg (±27.0) for DM and 100.8 kg (±27.2) for FVM (SEE = 1.2 kg), whereas the mean 1RM in LP was 249.3 kg (±60.2) for DM and 251.1 kg (±60.3) for FVM (SEE = 2.1 kg). A high correlation was found between the two methods for both CP and LP exercises (0.999, p < 0.001). Good agreement between the two methods emerged from the Bland and Altman plot analysis. CONCLUSION: These findings suggest the use of the proposed methodology as a valid alternative to other indirect approaches for 1RM prediction. The mathematical construct is simply based on the definition of the 1RM, and it is fed with subject's muscle strength capacities measured during a specific exercise. Its reliability is, thus, expected to be not affected by those factors that typically jeopardize regression-based approaches.


Subject(s)
Athletic Performance/physiology , Models, Biological , Muscle Contraction/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Resistance Training/methods , Adult , Computer Simulation , Exercise Tolerance/physiology , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity , Weight Lifting/physiology
9.
J Electromyogr Kinesiol ; 25(6): 907-13, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26363565

ABSTRACT

While the 3-min all-out test is an ideal exercise paradigm to study muscle fatigue during dynamic whole-body exercise, so far it has been used mainly to provide insight into the bioenergetic determinants of performance. To shed some light into the development of peripheral muscle fatigue during the 3-min all-out test, we investigated the time course of muscle-fibre conduction velocity (MFCV). Twelve well-trained cyclists (23 ± 3 yrs) performed an incremental test, a 3-min all-out familiarization trial and a 3-min all-out test. Surface electromyographic signals were detected from the vastus lateralis muscle of the dominant limb. MFCV decreased with power output, though with a somewhat different time course, and the two parameters were strongly correlated (r = 0.87; P < 0.001). A modest decrease in MFCV (17.7 ± 4.8%), probably due to the endurance characteristics of the subjects, may help explain why a relatively high power output (79 ± 8% of the peak power output of the incremental test; 60 ± 14% of the difference between this peak value and the gas exchange threshold) was still maintained at the end of the test. These findings suggest that muscle fatigue substantially affects performance in the 3-min all-out test, expanding on the traditional bioenergetic explanation that performance is limited by rate and capacity of energy supply.


Subject(s)
Bicycling/physiology , Muscle Contraction , Muscle, Skeletal/physiology , Adult , Biomechanical Phenomena , Humans , Male , Muscle Fatigue , Oxygen Consumption
SELECTION OF CITATIONS
SEARCH DETAIL
...