Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Pediatr Neurol ; 154: 4-8, 2024 May.
Article in English | MEDLINE | ID: mdl-38428336

ABSTRACT

BACKGROUND: Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of inherited peripheral neuropathies. Although the typical disease onset is reported in the second decade, earlier onsets are not uncommon. To date, few studies on pediatric populations have been conducted and the achievement of molecular diagnosis remains challenging. METHODS: During the last 24 years we recruited 223 patients with early-onset hereditary peripheral neuropathies (EOHPN), negative for PMP22 duplication, 72 of them referred by a specialized pediatric hospital. Genetic testing for CMT-associated genes has been carried out with a range of different techniques. RESULTS: Of the 223 EOHPN cases, 43% were classified as CMT1 (demyelinating), 49% as CMT2 (axonal), and 8% as CMTi (intermediate). Genetic diagnosis was reached in 51% of patients, but the diagnostic yield increased to 67% when focusing only on cases from the specialized pediatric neuromuscular centers. Excluding PMP22 rearrangements, no significant difference in diagnostic rate between demyelinating and axonal forms was identified. De novo mutations account for 38% of cases. CONCLUSIONS: This study describes an exhaustive picture of EOHPN in an Italian referral genetic center and analyzes the molecular diagnostic rate of a heterogeneous cohort compared with one referred by a specialized pediatric center. Our data identify MPZ, MFN2, GDAP1, and SH3TC2 genes as the most frequent players in EOHPN. Our study underlines the relevance of a specific neurological pediatric expertise to address the genetic testing and highlights its importance to clarify possible unexpected results when neuropathy is only a secondary clinical sign of a more complex phenotype.


Subject(s)
Charcot-Marie-Tooth Disease , Humans , Child , Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/genetics , Genetic Testing , Phenotype , Mutation
2.
Front Neurol ; 14: 1224241, 2023.
Article in English | MEDLINE | ID: mdl-37965175

ABSTRACT

Hereditary myopathies represent a clinically and genetically heterogeneous group of neuromuscular disorders, characterized by highly variable clinical presentations and frequently overlapping phenotypes with other neuromuscular disorders, likely influenced by genetic and environmental modifiers. Genetic testing is often challenging due to ambiguous clinical diagnosis. Here, we present the case of a family with clinical and Electromyography (EMG) features resembling a myotonia-like disorder in which Whole Exome Sequencing (WES) analysis revealed the co-segregation of two rare missense variants in UBR4 and HSPG2, genes previously associated with episodic ataxia 8 (EA8). A review of the literature highlighted a striking overlap between the clinical and the molecular features of our family and the previously described episodic ataxias (EAs), which raises concerns about the genotype-phenotype correlation, clinical variability, and the confounding overlap in these groups of disorders. This emphasizes the importance of thoroughly framing the patient's phenotype. The more clear-cut the diagnosis, the easier the identification of a genetic determinant, and the better the prognosis and the treatment of patients.

3.
J Peripher Nerv Syst ; 28(4): 620-628, 2023 12.
Article in English | MEDLINE | ID: mdl-37897416

ABSTRACT

BACKGROUND AND AIMS: POLR3B gene encodes a subunit of RNA polymerase III (Pol III). Biallelic mutations in POLR3B are associated with leukodystrophies, but recently de novo heterozygous mutations have been described in early onset peripheral demyelinating neuropathies with or without central involvement. Here, we report the first Italian case carrying a de novo variant in POLR3B with a pure neuropathy phenotype and primary axonal involvement of the largest nerve fibers. METHODS: Nerve conduction studies, sympathetic skin response, dynamic sweat test, tactile and thermal quantitative sensory testing and brain magnetic resonance imaging were performed according to standard procedures. Histopathological examination was performed on skin and sural nerve biopsies. Molecular analysis of the proband and his relatives was performed with Next Generation Sequencing. The impact of the identified variant on the overall protein structure was evaluated through rotamers method. RESULTS: Since his early adolescence, the patient presented with signs of polyneuropathy with severe distal weakness, atrophy, and reduced sensation. Neurophysiological studies showed a sensory-motor axonal polyneuropathy, with confirmed small fiber involvement. In addition, skin biopsy and sural nerve biopsy showed predominant large fibers involvement. A trio's whole exome sequencing revealed a novel de novo variant p.(Arg1046Cys) in POLR3B, which was classified as Probably Pathogenic. Molecular modeling data confirmed a deleterious effect of the variant on protein structure. INTERPRETATION: Neurophysiological and morphological findings suggest a primary axonal involvement of the largest nerve fibers in POLR3B-related neuropathies. A partial loss of function mechanism is proposed for both neuropathy and leukodystrophy phenotypes.


Subject(s)
Demyelinating Diseases , Peripheral Nervous System Diseases , Polyneuropathies , RNA Polymerase III , Adolescent , Humans , Axons , Demyelinating Diseases/genetics , Mutation , Nerve Fibers/metabolism , Peripheral Nervous System Diseases/genetics , Polyneuropathies/genetics , Proteins/genetics , RNA Polymerase III/genetics , RNA Polymerase III/metabolism
4.
Acta Myol ; 42(4): 113-117, 2023.
Article in English | MEDLINE | ID: mdl-38406380

ABSTRACT

Biallelic mutations in the sorbitol dehydrogenase (SORD) gene have been identified as a genetic cause of autosomal recessive axonal Charcot-Marie-Tooth disease 2 (CMT2) and distal hereditary motor neuropathy (dHMN). We herein review the main phenotypes associated with SORD mutations and report the case of a 16-year-old man who was referred to our outpatient clinic for a slowly worsening gait disorder with wasting and weakness of distal lower limbs musculature. Since creatine phosphokinase (CPK) values were persistently raised (1.5fold increased) and a Next-Generation Sequencing CMT-associated panel failed in identifying pathogenic variants, a muscle biopsy was performed with evidence of alterations suggestive of a protein surplus distal myopathy. Finally, Whole-Exome Sequencing (WES) identified two pathogenic SORD variants in the heterozygous state: c.458C > A (p.Ala153Asp) and c.757delG (p.Ala253Glnfs*27). This is an isolated report of compound heterozygosity for two SORD mutations associated with clinical and histological signs of skeletal muscle involvement, expanding the phenotypic expression of SORD mutations.


Subject(s)
Charcot-Marie-Tooth Disease , L-Iditol 2-Dehydrogenase , Male , Humans , Adolescent , L-Iditol 2-Dehydrogenase/genetics , Charcot-Marie-Tooth Disease/genetics , Muscle, Skeletal/pathology , Mutation , Phenotype , Pedigree
6.
Life (Basel) ; 12(3)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35330153

ABSTRACT

Charcot-Marie-Tooth (CMT) disease is the most commonly inherited neurological disorder. This study includes patients affected by CMT during regular follow-ups at the CMT clinic in Genova, a neuromuscular university center in the northwest of Italy, with the aim of describing the genetic distribution of CMT subtypes in our cohort and reporting a peculiar phenotype. Since 2004, 585 patients (447 index cases) have been evaluated at our center, 64.9% of whom have a demyelinating neuropathy and 35.1% of whom have an axonal neuropathy. A genetic diagnosis was achieved in 66% of all patients, with the following distribution: CMT1A (48%), HNPP (14%), CMT1X (13%), CMT2A (5%), and P0-related neuropathies (7%), accounting all together for 87% of all the molecularly defined neuropathies. Interestingly, we observe a peculiar phenotype with initial exclusive lower limb involvement as well as lower limb involvement that is maintained over time, which we have defined as a "strictly length-dependent" phenotype. Most patients with this clinical presentation shared variants in either HSPB1 or MPZ genes. The identification of distinctive phenotypes such as this one may help to address genetic diagnosis. In conclusion, we describe our diagnostic experiences as a multidisciplinary outpatient clinic, combining a gene-by-gene approach or targeted gene panels based on clinical presentation.

7.
Muscle Nerve ; 65(1): 96-104, 2022 01.
Article in English | MEDLINE | ID: mdl-34687219

ABSTRACT

INTRODUCTION/AIMS: Currently, there are no straightforward guidelines for the clinical and diagnostic management of hyperCKemia, a frequent and nonspecific presentation in muscle diseases. Therefore, we aimed to describe our diagnostic workflow for evaluating patients with this condition. METHODS: We selected 83 asymptomatic or minimally symptomatic patients with persistent hyperCKemia for participation in this Italian multicenter study. Patients with facial involvement and distal or congenital myopathies were excluded, as were patients with suspected inflammatory myopathies or predominant respiratory or cardiac involvement. All patients underwent a neurological examination and nerve conduction and electromyography studies. The first step of the investigation included a screening for Pompe disease. We then evaluated the patients for myotonic dystrophy type II-related CCTG expansion and excluded patients with copy number variations in the DMD gene. Subsequently, the undiagnosed patients were investigated using a target gene panel that included 20 genes associated with isolated hyperCKemia. RESULTS: Using this approach, we established a definitive diagnosis in one third of the patients. The detection rate was higher in patients with severe hyperCKemia and abnormal electromyographic findings. DISCUSSION: We have described our diagnostic workflow for isolated hyperCKemia, which is based on electrodiagnostic data, biochemical screening, and first-line genetic investigations, followed by successive targeted sequencing panels. Both clinical signs and electromyographic abnormalities are associated with increased diagnostic yields.


Subject(s)
Glycogen Storage Disease Type II , Muscular Diseases , Creatine Kinase , DNA Copy Number Variations , Electromyography , Glycogen Storage Disease Type II/diagnosis , Humans
8.
Cancers (Basel) ; 11(11)2019 10 30.
Article in English | MEDLINE | ID: mdl-31671564

ABSTRACT

BACKGROUND: Uveal melanoma (UM), a rare cancer of the eye, is characterized by initiating mutations in the genes G-protein subunit alpha Q (GNAQ), G-protein subunit alpha 11 (GNA11), cysteinyl leukotriene receptor 2 (CYSLTR2), and phospholipase C beta 4 (PLCB4) and by metastasis-promoting mutations in the genes splicing factor 3B1 (SF3B1), serine and arginine rich splicing factor 2 (SRSF2), and BRCA1-associated protein 1 (BAP1). Here, we tested the hypothesis that additional mutations, though occurring in only a few cases ("secondary drivers"), might influence tumor development. METHODS: We analyzed all the 4125 mutations detected in exome sequencing datasets, comprising a total of 139 Ums, and tested the enrichment of secondary drivers in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that also contained the initiating mutations. We searched for additional mutations in the putative secondary driver gene protein tyrosine kinase 2 beta (PTK2B) and we developed new mutational signatures that explain the mutational pattern observed in UM. RESULTS: Secondary drivers were significantly enriched in KEGG pathways that also contained GNAQ and GNA11, such as the calcium-signaling pathway. Many of the secondary drivers were known cancer driver genes and were strongly associated with metastasis and survival. We identified additional mutations in PTK2B. Sparse dictionary learning allowed for the identification of mutational signatures specific for UM. CONCLUSIONS: A considerable part of rare mutations that occur in addition to known driver mutations are likely to affect tumor development and progression.

9.
Genes Chromosomes Cancer ; 57(8): 387-400, 2018 08.
Article in English | MEDLINE | ID: mdl-29689622

ABSTRACT

Uveal melanoma (UM) exhibits recurring chromosomal abnormalities and gene driver mutations, which are related to tumor evolution/progression. Almost half of the patients with UM develop distant metastases, predominantly to the liver, and so far there are no effective adjuvant therapies. An accurate UM genetic profile could assess the individual patient's metastatic risk, and provide the basis to determine an individualized targeted therapeutic strategy for each UM patient. To investigate the presence of specific chromosomal and gene alterations, BAP1 protein expression, and their relationship with distant progression free survival (DPFS), we analyzed tumor samples from 63 UM patients (40 men and 23 women, with a median age of 64 years), who underwent eye enucleation by a single cancer ophthalmologist from December 2005 to June 2016. UM samples were screened for the presence of losses/gains in chromosomes 1p, 3, 6p, and 8q, and for mutations in GNAQ, GNA11, BAP1, SF3B1, and EIF1AX. BAP1 protein expression was detected by immunohistochemistry (IHC). Multivariate analysis showed that the presence of monosomy 3, 8q gain, and loss of BAP1 protein were significantly associated to DPFS, while BAP1 gene mutation was not, mainly due to the presence of metastatic UM cases with negative BAP1 IHC and no BAP1 mutation detected by Sanger sequencing. Loss of BAP1 protein expression and monosomy 3 represent the strongest predictors of metastases, and may have important implications for implementation of patient surveillance, properly designed clinical trials enrollment, and adjuvant therapy.


Subject(s)
Chromosome Aberrations , Melanoma/genetics , Mutation , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Uveal Neoplasms/genetics , Aged , Chromosome Deletion , Chromosomes, Human, Pair 3/genetics , DNA Mutational Analysis , Disease-Free Survival , Female , Humans , Male , Melanoma/metabolism , Melanoma/mortality , Middle Aged , Prognosis , Retrospective Studies , Transcriptome , Tumor Suppressor Proteins/biosynthesis , Ubiquitin Thiolesterase/biosynthesis , Uveal Neoplasms/metabolism , Uveal Neoplasms/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...