Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 97(2-1): 022109, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29548228

ABSTRACT

We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions. Using this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature T_{c}^{*} and the critical density ρ_{i,c}^{*} become lower. At the same time, our results suggest that an increase in size asymmetry of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of T_{c}^{*} and ρ_{i,c}^{*} and even to a disappearance of the phase transition, especially for the case of small matrix particles.

2.
J Phys Chem B ; 122(21): 5534-5546, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29385800

ABSTRACT

We develop the scaled particle theory to describe the thermodynamic properties and orientation ordering of a binary mixture of hard spheres (HS) and hard spherocylinders (HSC) confined in a disordered porous medium. Using this theory, the analytical expressions of the free energy, the pressure, and the chemical potentials of HS and HSC have been derived. The improvement of obtained results is considered by introducing the Carnahan-Starling-like and Parsons-Lee-like corrections. Phase diagrams for the isotropic-nematic transition are calculated from the bifurcation analysis of the integral equation for the orientation singlet distribution function and from the conditions of thermodynamic equilibrium. Both the approaches correctly predict the isotropic-nematic transition at low concentrations of hard spheres. However, the thermodynamic approach provides more accurate results and is able to describe the demixing phenomena in the isotropic and nematic phases. The effects of porous medium on the isotropic-nematic phase transition and demixing behavior in a binary HS/HSC mixture are discussed.

3.
J Phys Condens Matter ; 28(41): 414003, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27548356

ABSTRACT

We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix. The approach allows us to formulate the perturbation theory using the SPT for the description of the thermodynamics of the reference system. The phase diagrams of the RPM in matrices of different porosities and for different size ratios of matrix and fluid particles are calculated in the random-phase approximation and also when the effects of higher-order correlations between ions are taken into account. Both approximations correctly reproduce the basic effects of porous media on the vapour-liquid phase diagram, i.e. with a decrease of porosity the critical point shifts towards lower fluid densities and lower temperatures and the coexistence region gets narrower. For the fixed matrix porosity, both the critical temperature and the critical density increase with an increase of size of matrix particles and tend to the critical values of the bulk RPM.

6.
J Chem Phys ; 142(19): 194708, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26001474

ABSTRACT

We apply a field-theoretical approach to study the structure and thermodynamics of a two-Yukawa fluid confined by a hard wall. We derive mean field equations allowing for numerical evaluation of the density profile which is compared to analytical estimations. Beyond the mean field approximation, analytical expressions for the free energy, the pressure, and the correlation function are derived. Subsequently, contributions to the density profile and the adsorption coefficient due to Gaussian fluctuations are found. Both the mean field and the fluctuation terms of the density profile are shown to satisfy the contact theorem. We further use the contact theorem to improve the Gaussian approximation for the density profile based on a better approximation for the bulk pressure. The results obtained are compared to computer simulation data.

7.
J Phys Chem Lett ; 5(24): 4260-4, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-26273972

ABSTRACT

The lack of a simple analytical description of the hard-sphere fluid in a matrix with hard-core obstacles is limiting progress in the development of thermodynamic perturbation theories for the fluid in random porous media. We propose a simple and highly accurate analytical scheme, which allows us to calculate thermodynamic and percolation properties of a network-forming fluid confined in the random porous media, represented by the hard-sphere fluid and overlapping hard-sphere matrices, respectively. Our scheme is based on the combination of scaled-particle theory, Wertheim's thermodynamic perturbation theory for associating fluids and extension of the Flory-Stockmayer theory for percolation. The liquid-gas phase diagram and percolation threshold line for several versions of the patchy colloidal fluid model confined in a random porous media are calculated and discussed. The method presented enables calculation of the thermodynamic and percolation properties of a large variety of polymerizing and network-forming fluids confined in random porous media.

8.
J Chem Phys ; 134(7): 074503, 2011 Feb 21.
Article in English | MEDLINE | ID: mdl-21341855

ABSTRACT

Based on a new and consistent formulation of scaled particle theory for a fluid confined in random porous media, a series of new approximations are proposed and one of them gives equations of state with excellent accuracy for a hard sphere fluid adsorbed in a hard sphere or an overlapping hard sphere matrix. Although the initial motivation was to remedy a flaw in a previous formulation of the scaled particle theory for a confined fluid, the new formulation is not a trivial and straightforward correction of the previous one. A few conceptual and significant modifications have to be introduced for developing the present formulation.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(3 Pt 1): 031110, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20365700

ABSTRACT

The effects of size and charge asymmetry on the gas-liquid critical parameters of a primitive model (PM) of ionic fluids are studied within the framework of the statistical field theory based on the collective variables method. Recently, this approach has enabled us to obtain the correct trends of the both critical parameters of the equisize charge-asymmetric PM without assuming ionic association. In this paper, we focus on the general case of an asymmetric PM characterized by the two parameters: hard-sphere diameter, lambda=sigma+/sigma-, and charge, z=q+/|q-|, ratios of the two ionic species. We derive an explicit expression for the chemical potential conjugate to the order parameter which includes the effects of correlations up to the third order. Based on this expression we consider the three versions of PM: a monovalent size-asymmetric PM (lambda not equal 1, z=1) , an equisize charge-asymmetric PM (lambda=1, z not equal 1) and a size- and charge-asymmetric PM (lambda not equal 1, z=2) . Similar to simulations, our theory predicts that the critical temperature and the critical density decrease with the increase in size asymmetry. Regarding the effects of charge asymmetry, we obtain the correct trend of the critical temperature with z , while the trend of the critical density obtained in this approximation is inconsistent with simulations, as well as with our previous results found in the higher-order approximation. We expect that the consideration of the higher-order correlations will lead to the correct trend of the critical density with charge asymmetry.


Subject(s)
Gases/chemistry , Ionic Liquids/chemistry , Microfluidics/methods , Models, Chemical , Solutions/chemistry , Computer Simulation , Phase Transition
SELECTION OF CITATIONS
SEARCH DETAIL
...