Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 40(36): 6682-700, 2001 Dec 20.
Article in English | MEDLINE | ID: mdl-18364980

ABSTRACT

We present an overview of the calibration of the Sea-viewing Wide Field-of View Sensor (SeaWiFS) from its performance verification at the manufacturer's facility to the completion of its third year of on-orbit measurements. These calibration procedures have three principal parts: a prelaunch radiometric calibration that is traceable to the National Institute of Standards and Technology; the Transfer-to-Orbit Experiment, a set of measurements that determine changes in the instrument's calibration from its manufacture to the start of on-orbit operations; and measurements of the sun and the moon to determine radiometric changes on orbit. To our knowledge, SeaWiFS is the only instrument that uses routine lunar measurements to determine changes in its radiometric sensitivity. On the basis of these methods, the overall uncertainty in the SeaWiFS top-of-the-atmosphere radiances is estimated to be 4-5%. We also show the results of comparison campaigns with aircraft- and ground-based measurements, plus the results of an experiment, called the Southern Ocean Band 8 Gain Study. These results are used to check the calibration of the SeaWiFS bands. To date, they have not been used to change the instrument's prelaunch calibration coefficients. In addition to these procedures, SeaWiFS is a vicariously calibrated instrument for ocean-color measurements. In the vicarious calibration of the SeaWiFS visible bands, the calibration coefficients are modified to force agreement with surface truth measurements from the Marine Optical Buoy, which is moored off the Hawaiian Island of Lanai. This vicarious calibration is described in a companion paper.

2.
Appl Opt ; 38(21): 4649-64, 1999 Jul 20.
Article in English | MEDLINE | ID: mdl-18323952

ABSTRACT

We report on the lunar and solar measurements used to determine the changes in the radiometric sensitivity of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Radiometric sensitivity is defined as the output from the instrument (or from one of the instrument bands) per unit spectral radiance at the instrument's input aperture. Knowledge of the long-term repeatability of the SeaWiFS measurements is crucial to maintaining the quality of the ocean scenes derived from measurements by the instrument. For SeaWiFS bands 1-6 (412-670 nm), the change in radiometric sensitivity is less than 0.2% for the period from November 1997 through November 1998. For band 7 (765 nm), the change is approximately 1.5% and for band 8 (865 nm) approximately 5%. The rates of change of bands 7 and 8, which were linear with time for the first eight months of lunar measurements, are now slowing. The scatter in the data points about the trend lines in this analysis is less than 0.3% for all eight SeaWiFS bands. These results are based on monthly measurements of the moon. Daily solar measurements using an onboard diffuser show that the radiometric sensitivities of the SeaWiFS bands have changed smoothly during the time intervals between lunar measurements. Because SeaWiFS measurements have continued past November 1998, the results presented here are considered as a snapshot of the instrument performance as of that date.

3.
Appl Opt ; 38(27): 5692-702, 1999 Sep 20.
Article in English | MEDLINE | ID: mdl-18324080

ABSTRACT

We assessed the geometric and radiometric performance of the ocean color and temperature scanner (OCTS) using data acquired over the United States. Initial results indicated a geometric offset in the along-track direction of 4-5 pixels that was attributed to a tilt bias. OCTS radiometric data appeared to suffer from near-field and possibly far-field scatter effects. Analysis of radiometric stability was inconclusive because of daily variability and the absence of a full seasonal cycle. Comparison of OCTS-computed water-leaving radiances with colocated in situ measurements showed that the prelaunch calibration required adjustment from -2% to +13%. Minor modification of OCTS data processing based on these results and avoidance of near-field scatter effects can enable improved and more-reliable OCTS data for quantitative scientific analyses.

SELECTION OF CITATIONS
SEARCH DETAIL
...