Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Cell Rep Med ; 5(4): 101504, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38593809

ABSTRACT

Targeted therapies have improved outcomes for certain cancer subtypes, but cytotoxic chemotherapy remains a mainstay for triple-negative breast cancer (TNBC). The epithelial-to-mesenchymal transition (EMT) is a developmental program co-opted by cancer cells that promotes metastasis and chemoresistance. There are no therapeutic strategies specifically targeting mesenchymal-like cancer cells. We report that the US Food and Drug Administration (FDA)-approved chemotherapeutic eribulin induces ZEB1-SWI/SNF-directed chromatin remodeling to reverse EMT that curtails the metastatic propensity of TNBC preclinical models. Eribulin induces mesenchymal-to-epithelial transition (MET) in primary TNBC in patients, but conventional chemotherapy does not. In the treatment-naive setting, but not after acquired resistance to other agents, eribulin sensitizes TNBC cells to subsequent treatment with other chemotherapeutics. These findings provide an epigenetic mechanism of action of eribulin, supporting its use early in the disease process for MET induction to prevent metastatic progression and chemoresistance. These findings warrant prospective clinical evaluation of the chemosensitizing effects of eribulin in the treatment-naive setting.


Subject(s)
Antineoplastic Agents , Furans , Ketones , Polyether Polyketides , Triple Negative Breast Neoplasms , United States , Humans , Triple Negative Breast Neoplasms/pathology , Chromatin Assembly and Disassembly , Prospective Studies , Antineoplastic Agents/therapeutic use
2.
Epigenomics ; 16(5): 293-308, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38356412

ABSTRACT

Background: Triple-negative breast cancer (TNBC) is an aggressive disease with limited treatment options. Eribulin, a chemotherapeutic drug, induces epigenetic changes in cancer cells, suggesting a unique mechanism of action. Materials & methods: MDA-MB 231 cells were treated with eribulin and paclitaxel, and the samples from 53 patients treated with neoadjuvant eribulin were compared with those from 14 patients who received the standard-of-care treatment using immunohistochemistry. Results: Eribulin treatment caused significant DNA methylation changes in drug-tolerant persister TNBC cells, and it also elicited changes in the expression levels of epigenetic modifiers (DNMT1, TET1, DNMT3A/B) in vitro and in primary TNBC tumors. Conclusion: These findings provide new insights into eribulin's mechanism of action and potential biomarkers for predicting TNBC treatment response.


Subject(s)
DNA Methylation , Furans , Polyether Polyketides , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Ketones/pharmacology , Ketones/therapeutic use , DNA/metabolism , Cell Line, Tumor , Mixed Function Oxygenases/genetics , Proto-Oncogene Proteins/genetics
3.
bioRxiv ; 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37333096

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive disease subtype with limited treatment options. Eribulin is a chemotherapeutic approved for the treatment of advanced breast cancer that has been shown to elicit epigenetic changes. We investigated the effect of eribulin treatment on genome-scale DNA methylation patterns in TNBC cells. Following repeated treatment, The results showed that eribulin-induced changes in DNA methylation patterns evident in persister cells. Eribulin also affected the binding of transcription factors to genomic ZEB1 binding sites and regulated several cellular pathways, including ERBB and VEGF signaling and cell adhesion. Eribulin also altered the expression of epigenetic modifiers including DNMT1, TET1, and DNMT3A/B in persister cells. Data from primary human TNBC tumors supported these findings: DNMT1 and DNMT3A levels were altered by eribulin treatment in human primary TNBC tumors. Our results suggest that eribulin modulates DNA methylation patterns in TNBC cells by altering the expression of epigenetic modifiers. These findings have clinical implications for using eribulin as a therapeutic agent.

4.
bioRxiv ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37131809

ABSTRACT

The epithelial-mesenchymal transition (EMT) is a developmental program co-opted by tumor cells that aids the initiation of the metastatic cascade. Tumor cells that undergo EMT are relatively chemoresistant, and there are currently no therapeutic avenues specifically targeting cells that have acquired mesenchymal traits. We show that treatment of mesenchymal-like triple-negative breast cancer (TNBC) cells with the microtubule-destabilizing chemotherapeutic eribulin, which is FDA-approved for the treatment of advanced breast cancer, leads to a mesenchymal-epithelial transition (MET). This MET is accompanied by loss of metastatic propensity and sensitization to subsequent treatment with other FDA-approved chemotherapeutics. We uncover a novel epigenetic mechanism of action that supports eribulin pretreatment as a path to MET induction that curtails metastatic progression and the evolution of therapy resistance.

5.
Breast Cancer Res ; 25(1): 23, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36859337

ABSTRACT

Stratifying breast cancer into specific molecular or histologic subtypes aids in therapeutic decision-making and predicting outcomes; however, these subtypes may not be as distinct as previously thought. Patients with luminal-like, estrogen receptor (ER)-expressing tumors have better prognosis than patients with more aggressive, triple-negative or basal-like tumors. There is, however, a subset of luminal-like tumors that express lower levels of ER, which exhibit more basal-like features. We have found that breast tumors expressing lower levels of ER, traditionally considered to be luminal-like, represent a distinct subset of breast cancer characterized by the emergence of basal-like features. Lineage tracing of low-ER tumors in the MMTV-PyMT mouse mammary tumor model revealed that basal marker-expressing cells arose from normal luminal epithelial cells, suggesting that luminal-to-basal plasticity is responsible for the evolution and emergence of basal-like characteristics. This plasticity allows tumor cells to gain a new lumino-basal phenotype, thus leading to intratumoral lumino-basal heterogeneity. Single-cell RNA sequencing revealed SOX10 as a potential driver for this plasticity, which is known among breast tumors to be almost exclusively expressed in triple-negative breast cancer (TNBC) and was also found to be highly expressed in low-ER tumors. These findings suggest that basal-like tumors may result from the evolutionary progression of luminal tumors with low ER expression.


Subject(s)
Mammary Neoplasms, Animal , Receptors, Estrogen , Animals , Mice , Phenotype , Gene Expression , Disease Models, Animal
6.
Sci Adv ; 8(31): eabj8002, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35921406

ABSTRACT

The epithelial-to-mesenchymal transition (EMT) is frequently co-opted by cancer cells to enhance migratory and invasive cell traits. It is a key contributor to heterogeneity, chemoresistance, and metastasis in many carcinoma types, where the intermediate EMT state plays a critical tumor-initiating role. We isolate multiple distinct single-cell clones from the SUM149PT human breast cell line spanning the EMT spectrum having diverse migratory, tumor-initiating, and metastatic qualities, including three unique intermediates. Using a multiomics approach, we identify CBFß as a key regulator of metastatic ability in the intermediate state. To quantify epithelial-mesenchymal heterogeneity within tumors, we develop an advanced multiplexed immunostaining approach using SUM149-derived orthotopic tumors and find that the EMT state and epithelial-mesenchymal heterogeneity are predictive of overall survival in a cohort of stage III breast cancer. Our model reveals previously unidentified insights into the complex EMT spectrum and its regulatory networks, as well as the contributions of epithelial-mesenchymal plasticity (EMP) in tumor heterogeneity in breast cancer.


Subject(s)
Breast Neoplasms , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Neoplasm Metastasis
7.
Methods Cell Biol ; 171: 149-161, 2022.
Article in English | MEDLINE | ID: mdl-35953198

ABSTRACT

Tumor heterogeneity presents an ongoing challenge to disease progression and treatment in many solid tumor types. Understanding the roots of intra-tumoral heterogeneity and how it may relate to the high incidence of metastasis is critical in overcoming disease relapse and chemoresistance. The epithelial-to-mesenchymal transition is a dynamic cellular program that is co-opted by cancer cells to enhance, among others, migratory and invasive cell traits. It is a key contributor to heterogeneity, chemo-resistance, and metastasis in many carcinoma-types, with the intermediate or hybrid EMT state playing a critical role due to its increased tumor-initiating potential. A critical component in utilizing this knowledge in patient treatment is to first detect and score the impact of EMT in a patient sample. Here, we provide a detailed protocol to detect EMT states and quantify the resulting epithelial-mesenchymal heterogeneity within tumors using a novel multiplexed immunostaining approach and analysis method. This protocol and concept can easily be adapted using custom panels of markers to explore other sources of tumoral heterogeneity in addition to EMT.


Subject(s)
Epithelial-Mesenchymal Transition , Humans , Benzopyrans , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Phenols , Phenotype
8.
Epigenomics ; 14(9): 519-535, 2022 05.
Article in English | MEDLINE | ID: mdl-35382559

ABSTRACT

Background: Epithelial-to-mesenchymal transition (EMT) is an early step in the invasion-metastasis cascade, involving progression through intermediate cell states. Due to challenges with isolating intermediate cell states, genome-wide cytosine modifications that define transition are not completely understood. Methods: The authors measured multiple DNA cytosine modification marks and chromatin accessibility across clonal populations residing in specific EMT states. Results: Clones exhibiting more intermediate EMT phenotypes demonstrated increased 5-hydroxymethylcytosine and decreased 5-methylcytosine. Open chromatin regions containing increased 5-hydroxymethylcytosine CpG loci were enriched in EMT transcription factor motifs and were associated with Rho GTPases. Conclusion: The results indicate the importance of both distinct and shared epigenetic profiles associated with EMT processes that may be targeted to prevent EMT progression.


Subject(s)
Cytosine , DNA Methylation , Chromatin/genetics , Epigenesis, Genetic , Epithelial-Mesenchymal Transition/genetics , Humans , Transcription Factors/genetics
9.
Cancers (Basel) ; 14(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35267444

ABSTRACT

The epithelial-to-mesenchymal transition (EMT) and its reversal, the mesenchymal-to-epithelial transition (MET) are critical components of the metastatic cascade in breast cancer and many other solid tumor types. Recent work has uncovered the presence of a variety of states encompassed within the EMT spectrum, each of which may play unique roles or work collectively to impact tumor progression. However, defining EMT status is not routinely carried out to determine patient prognosis or dictate therapeutic decision-making in the clinic. Identifying and quantifying the presence of various EMT states within a tumor is a critical first step to scoring patient tumors to aid in determining prognosis. Here, we review the major strides taken towards translating our understanding of EMT biology from bench to bedside. We review previously used approaches including basic immunofluorescence staining, flow cytometry, single-cell sequencing, and multiplexed tumor mapping. Future studies will benefit from the consideration of multiple methods and combinations of markers in designing a diagnostic tool for detecting and measuring EMT in patient tumors.

10.
Dev Cell ; 55(5): 544-557.e6, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33120014

ABSTRACT

Differentiation therapy utilizes our understanding of the hierarchy of cellular systems to pharmacologically induce a shift toward terminal commitment. While this approach has been a paradigm in treating certain hematological malignancies, efforts to translate this success to solid tumors have met with limited success. Mammary-specific activation of PKA in mouse models leads to aberrant differentiation and diminished self-renewing potential of the basal compartment, which harbors mammary repopulating cells. PKA activation results in tumors that are more benign, exhibiting reduced metastatic propensity, loss of tumor-initiating potential, and increased sensitivity to chemotherapy. Analysis of tumor histopathology revealed features of overt differentiation with papillary characteristics. Longitudinal single-cell profiling at the hyperplasia and tumor stages uncovered an altered path of tumor evolution whereby PKA curtails the emergence of aggressive subpopulations. Acting through the repression of SOX4, PKA activation promotes tumor differentiation and represents a possible adjuvant to chemotherapy for certain breast cancers.


Subject(s)
Cell Differentiation , Cell Self Renewal , Cyclic AMP-Dependent Protein Kinases/metabolism , Mammary Neoplasms, Animal/enzymology , Mammary Neoplasms, Animal/pathology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Lineage , Disease Models, Animal , Disease Progression , Enzyme Activation , Female , Gene Amplification , Genetic Loci , Genome, Human , Humans , Mammary Neoplasms, Animal/genetics , Mice , Neoplasm Metastasis , SOXC Transcription Factors/metabolism , Signal Transduction
11.
Nat Commun ; 11(1): 2042, 2020 04 27.
Article in English | MEDLINE | ID: mdl-32341362

ABSTRACT

The endothelial cell adhesion molecule E-selectin is a key component of the bone marrow hematopoietic stem cell (HSC) vascular niche regulating balance between HSC self-renewal and commitment. We now report in contrast, E-selectin directly triggers signaling pathways that promote malignant cell survival and regeneration. Using acute myeloid leukemia (AML) mouse models, we show AML blasts release inflammatory mediators that upregulate endothelial niche E-selectin expression. Alterations in cell-surface glycosylation associated with oncogenesis enhances AML blast binding to E-selectin and enable promotion of pro-survival signaling through AKT/NF-κB pathways. In vivo AML blasts with highest E-selectin binding potential are 12-fold more likely to survive chemotherapy and main contributors to disease relapse. Absence (in Sele-/- hosts) or therapeutic blockade of E-selectin using small molecule mimetic GMI-1271/Uproleselan effectively inhibits this niche-mediated pro-survival signaling, dampens AML blast regeneration, and strongly synergizes with chemotherapy, doubling the duration of mouse survival over chemotherapy alone, whilst protecting endogenous HSC.


Subject(s)
Drug Resistance, Neoplasm , E-Selectin/antagonists & inhibitors , E-Selectin/metabolism , Leukemia, Myeloid, Acute/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Bone Marrow , Coculture Techniques , Disease Models, Animal , Female , Glycolipids/therapeutic use , Glycosylation , Hematopoietic Stem Cells/cytology , Humans , Inflammation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
12.
Sci Transl Med ; 10(436)2018 04 11.
Article in English | MEDLINE | ID: mdl-29643230

ABSTRACT

Patients undergoing surgical resection of primary breast tumors confront a risk for metastatic recurrence that peaks sharply 12 to 18 months after surgery. The cause of early metastatic relapse in breast cancer has long been debated, with many ascribing these relapses to the natural progression of the disease. Others have proposed that some aspect of surgical tumor resection triggers the outgrowth of otherwise-dormant metastases, leading to the synchronous pattern of relapse. Clinical data cannot distinguish between these hypotheses, and previous experimental approaches have not provided clear answers. Such uncertainty hinders the development and application of therapeutic approaches that could potentially reduce early metastatic relapse. We describe an experimental model system that definitively links surgery and the subsequent wound-healing response to the outgrowth of tumor cells at distant anatomical sites. Specifically, we find that the systemic inflammatory response induced after surgery promotes the emergence of tumors whose growth was otherwise restricted by a tumor-specific T cell response. Furthermore, we demonstrate that perioperative anti-inflammatory treatment markedly reduces tumor outgrowth in this model, suggesting that similar approaches might substantially reduce early metastatic recurrence in breast cancer patients.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Animals , Biomarkers, Tumor/immunology , Breast Neoplasms/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Female , Mice , Neoplasm Metastasis/immunology , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/metabolism
13.
Proc Natl Acad Sci U S A ; 114(12): E2337-E2346, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28270621

ABSTRACT

Neoplastic cells within individual carcinomas often exhibit considerable phenotypic heterogeneity in their epithelial versus mesenchymal-like cell states. Because carcinoma cells with mesenchymal features are often more resistant to therapy and may serve as a source of relapse, we sought to determine whether such cells could be further stratified into functionally distinct subtypes. Indeed, we find that a basal epithelial marker, integrin-ß4 (ITGB4), can be used to enable stratification of mesenchymal-like triple-negative breast cancer (TNBC) cells that differ from one another in their relative tumorigenic abilities. Notably, we demonstrate that ITGB4+ cancer stem cell (CSC)-enriched mesenchymal cells reside in an intermediate epithelial/mesenchymal phenotypic state. Among patients with TNBC who received chemotherapy, elevated ITGB4 expression was associated with a worse 5-year probability of relapse-free survival. Mechanistically, we find that the ZEB1 (zinc finger E-box binding homeobox 1) transcription factor activity in highly mesenchymal SUM159 TNBC cells can repress expression of the epithelial transcription factor TAp63α (tumor protein 63 isoform 1), a protein that promotes ITGB4 expression. In addition, we demonstrate that ZEB1 and ITGB4 are important in modulating the histopathological phenotypes of tumors derived from mesenchymal TNBC cells. Hence, mesenchymal carcinoma cell populations are internally heterogeneous, and ITGB4 is a mechanistically driven prognostic biomarker that can be used to identify the more aggressive subtypes of mesenchymal carcinoma cells in TNBC. The ability to rapidly isolate and mechanistically interrogate the CSC-enriched, partially mesenchymal carcinoma cells should further enable identification of novel therapeutic opportunities to improve the prognosis for high-risk patients with TNBC.


Subject(s)
Carcinoma/metabolism , Integrin beta4/metabolism , Mesoderm/metabolism , Neoplastic Stem Cells/metabolism , Triple Negative Breast Neoplasms/metabolism , Carcinoma/genetics , Carcinoma/mortality , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Female , Humans , Integrin beta4/genetics , Mesoderm/cytology , Prognosis , Transcription Factors/genetics , Transcription Factors/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/mortality , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
14.
Cell ; 168(4): 670-691, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28187288

ABSTRACT

Metastases account for the great majority of cancer-associated deaths, yet this complex process remains the least understood aspect of cancer biology. As the body of research concerning metastasis continues to grow at a rapid rate, the biological programs that underlie the dissemination and metastatic outgrowth of cancer cells are beginning to come into view. In this review we summarize the cellular and molecular mechanisms involved in metastasis, with a focus on carcinomas where the most is known, and we highlight the general principles of metastasis that have begun to emerge.


Subject(s)
Carcinoma/pathology , Neoplasm Metastasis/pathology , Animals , Blood Platelets/metabolism , Carcinoma/genetics , Carcinoma/metabolism , Cell Movement , Epithelial-Mesenchymal Transition , Humans , Neoplasm Invasiveness , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Neutrophils/metabolism , T-Lymphocytes/immunology , Tumor Microenvironment
15.
Science ; 351(6277): aad3680, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26941323

ABSTRACT

The epithelial-to-mesenchymal transition enables carcinoma cells to acquire malignancy-associated traits and the properties of tumor-initiating cells (TICs). TICs have emerged in recent years as important targets for cancer therapy, owing to their ability to drive clinical relapse and enable metastasis. Here, we propose a strategy to eliminate mesenchymal TICs by inducing their conversion to more epithelial counterparts that have lost tumor-initiating ability. We report that increases in intracellular levels of the second messenger, adenosine 3',5'-monophosphate, and the subsequent activation of protein kinase A (PKA) induce a mesenchymal-to-epithelial transition (MET) in mesenchymal human mammary epithelial cells. PKA activation triggers epigenetic reprogramming of TICs by the histone demethylase PHF2, which promotes their differentiation and loss of tumor-initiating ability. This study provides proof-of-principle for inducing an MET as differentiation therapy for TICs and uncovers a role for PKA in enforcing and maintaining the epithelial state.


Subject(s)
Adenosine Monophosphate/metabolism , Breast Neoplasms/pathology , Cell Transformation, Neoplastic/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Epithelial-Mesenchymal Transition , Neoplastic Stem Cells/metabolism , Second Messenger Systems , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic/pathology , Cholera Toxin/pharmacology , Colforsin/pharmacology , Cyclic AMP-Dependent Protein Kinases/genetics , Enzyme Activation , Epigenesis, Genetic , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Histone Demethylases/metabolism , Homeodomain Proteins/metabolism , Humans , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Mesoderm/drug effects , Mesoderm/metabolism , Mesoderm/pathology , Mice , Neoplastic Stem Cells/pathology , Xenograft Model Antitumor Assays
16.
Article in English | MEDLINE | ID: mdl-28057845

ABSTRACT

Although important strides have been made in targeted therapy for certain leukemias and subtypes of breast cancer, the standard of care for most carcinomas still involves chemotherapy, radiotherapy, surgery, or a combination of these. Two processes serve as obstacles to the successful treatment of carcinomas. First, a majority of deaths from these types of cancers occurs as a result of distant metastases and not the primary tumors themselves. Second, subsets of cells that are able to survive conventional therapy drive the aggressive relapse of the tumors, often in forms that are resistant to treatment. A frequently observed feature of malignant carcinomas is the loss of epithelial traits and the gain of certain mesenchymal ones that are programmed by the cell-biological program termed the epithelial-to-mesenchymal transition (EMT). The EMT program can confer (i) an ability to disseminate, (ii) an ability to become stem-like tumor-initiating cells, (iii) an ability to found new tumor colonies at distant anatomical sites, and (iv) an elevated resistance to therapy. These multiple powers of the EMT program explain why it has become an attractive target for therapeutic intervention. Recent work has revealed the variable nature of the EMT, with multiple versions of the program being observed depending on the tissue context and the stage of tumor progression. In this review, we attempt to crystallize emerging concepts in the research on EMT and stemness and discuss the benefits of using a differentiation-based therapeutic strategy for the eradication of stem-like populations that have adopted various versions of the EMT program.


Subject(s)
Cell Differentiation/physiology , Cell Transformation, Neoplastic/pathology , Epithelial-Mesenchymal Transition/physiology , Leukemia/drug therapy , Neoplastic Stem Cells/cytology , Animals , Humans , Leukemia/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
17.
Nat Rev Drug Discov ; 13(7): 497-512, 2014 07.
Article in English | MEDLINE | ID: mdl-24981363

ABSTRACT

Since their identification in 1994, cancer stem cells (CSCs) have been objects of intensive study. Their properties and mechanisms of formation have become a major focus of current cancer research, in part because of their enhanced ability to initiate and drive tumour growth and their intrinsic resistance to conventional therapeutics. The discovery that activation of the epithelial-to-mesenchymal transition (EMT) programme in carcinoma cells can give rise to cells with stem-like properties has provided one possible mechanism explaining how CSCs arise and presents a possible avenue for their therapeutic manipulation. Here we address recent developments in CSC research, focusing on carcinomas that are able to undergo EMT. We discuss the signalling pathways that create these cells, cell-intrinsic mechanisms that could be exploited for selective elimination or induction of their differentiation, and the role of the tumour microenvironment in sustaining them. Finally, we propose ways to use our current knowledge of the complex biology of CSCs to design novel therapies to eliminate them.


Subject(s)
Antineoplastic Agents/therapeutic use , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
18.
Blood ; 123(17): 2682-90, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24596419

ABSTRACT

The MYB oncogene is widely expressed in acute leukemias and is important for the continued proliferation of leukemia cells, suggesting that MYB may be a therapeutic target in these diseases. However, realization of this potential requires a significant therapeutic window for MYB inhibition, given its essential role in normal hematopoiesis, and an approach for developing an effective therapeutic. We previously showed that the interaction of c-Myb with the coactivator CBP/p300 is essential for its transforming activity. Here, by using cells from Booreana mice which carry a mutant allele of c-Myb, we show that this interaction is essential for in vitro transformation by the myeloid leukemia oncogenes AML1-ETO, AML1-ETO9a, MLL-ENL, and MLL-AF9. We further show that unlike cells from wild-type mice, Booreana cells transduced with AML1-ETO9a or MLL-AF9 retroviruses fail to generate leukemia upon transplantation into irradiated recipients. Finally, we have begun to explore the molecular mechanisms underlying these observations by gene expression profiling. This identified several genes previously implicated in myeloid leukemogenesis and HSC function as being regulated in a c-Myb-p300-dependent manner. These data highlight the importance of the c-Myb-p300 interaction in myeloid leukemogenesis and suggest disruption of this interaction as a potential therapeutic strategy for acute myeloid leukemia.


Subject(s)
Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/metabolism , Proto-Oncogene Proteins c-myb/metabolism , p300-CBP Transcription Factors/metabolism , Alleles , Animals , Cell Transformation, Neoplastic , Core Binding Factor Alpha 2 Subunit/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Profiling , HEK293 Cells , Humans , Mice , Mice, Mutant Strains , Mutation , Oncogene Proteins, Fusion/metabolism , Oncogenes , Proto-Oncogene Proteins/metabolism , Transcription Factors/metabolism
19.
RNA ; 19(12): 1767-80, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24158791

ABSTRACT

Metastasis is a complex, multistep process involved in the progression of cancer from a localized primary tissue to distant sites, often characteristic of the more aggressive forms of this disease. Despite being studied in great detail in recent years, the mechanisms that govern this process remain poorly understood. In this study, we identify a novel role for miR-139-5p in the inhibition of breast cancer progression. We highlight its clinical relevance by reviewing miR-139-5p expression across a wide variety of breast cancer subtypes using in-house generated and online data sets to show that it is most frequently lost in invasive tumors. A biotin pull-down approach was then used to identify the mRNA targets of miR-139-5p in the breast cancer cell line MCF7. Functional enrichment analysis of the pulled-down targets showed significant enrichment of genes in pathways previously implicated in breast cancer metastasis (P < 0.05). Further bioinformatic analysis revealed a predicted disruption to the TGFß, Wnt, Rho, and MAPK/PI3K signaling cascades, implying a potential role for miR-139-5p in regulating the ability of cells to invade and migrate. To corroborate this finding, using the MDA-MB-231 breast cancer cell line, we show that overexpression of miR-139-5p results in suppression of these cellular phenotypes. Furthermore, we validate the interaction between miR-139-5p and predicted targets involved in these pathways. Collectively, these results suggest a significant functional role for miR-139-5p in breast cancer cell motility and invasion and its potential to be used as a prognostic marker for the aggressive forms of breast cancer.


Subject(s)
Carcinoma, Ductal, Breast/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/physiology , Triple Negative Breast Neoplasms/genetics , Base Sequence , Binding Sites , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Ductal, Breast/secondary , Cell Line, Tumor , Cell Movement , Cell Proliferation , DNA Replication , Female , Gene Expression , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasm Invasiveness , RNA Interference , Signal Transduction , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
20.
Nucleic Acids Res ; 39(11): 4664-79, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21317192

ABSTRACT

To gain insight into the mechanisms by which the Myb transcription factor controls normal hematopoiesis and particularly, how it contributes to leukemogenesis, we mapped the genome-wide occupancy of Myb by chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) in ERMYB myeloid progenitor cells. By integrating the genome occupancy data with whole genome expression profiling data, we identified a Myb-regulated transcriptional program. Gene signatures for leukemia stem cells, normal hematopoietic stem/progenitor cells and myeloid development were overrepresented in 2368 Myb regulated genes. Of these, Myb bound directly near or within 793 genes. Myb directly activates some genes known critical in maintaining hematopoietic stem cells, such as Gfi1 and Cited2. Importantly, we also show that, despite being usually considered as a transactivator, Myb also functions to repress approximately half of its direct targets, including several key regulators of myeloid differentiation, such as Sfpi1 (also known as Pu.1), Runx1, Junb and Cebpb. Furthermore, our results demonstrate that interaction with p300, an established coactivator for Myb, is unexpectedly required for Myb-mediated transcriptional repression. We propose that the repression of the above mentioned key pro-differentiation factors may contribute essentially to Myb's ability to suppress differentiation and promote self-renewal, thus maintaining progenitor cells in an undifferentiated state and promoting leukemic transformation.


Subject(s)
Gene Expression Regulation , Myeloid Progenitor Cells/metabolism , Myelopoiesis/genetics , Proto-Oncogene Proteins c-myb/metabolism , Repressor Proteins/metabolism , Transcription Factors/genetics , Transcription, Genetic , Animals , Binding Sites , Cells, Cultured , Chromatin/metabolism , Chromatin Immunoprecipitation , Gene Expression Profiling , Gene Regulatory Networks , Genomics , Histones/metabolism , Leukemia/genetics , Mice , Mice, Inbred C57BL , Myeloid Progenitor Cells/cytology , p300-CBP Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...