Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 156(21): 214112, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35676155

ABSTRACT

We model a binary mixture of passive and active Brownian particles in two dimensions using the effective interaction between passive particles in the active bath. The activity of active particles and the size ratio of two types of particles are the two control parameters in the system. The effective interaction is calculated from the average force on two particles generated by the active particles. The effective interaction can be attractive or repulsive, depending on the system parameters. The passive particles form four distinct structural orders for different system parameters, viz., homogeneous structures, disordered cluster, ordered cluster, and crystalline structure. The change in structure is dictated by the change in nature of the effective interaction. We further confirm the four structures using a full microscopic simulation of active and passive mixture. Our study is useful to understand the different collective behavior in non-equilibrium systems.

2.
Phys Rev E ; 104(1-1): 014606, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34412309

ABSTRACT

We undertake a detailed numerical study of the Active Model B proposed by Wittkowski et al., [Nature Commun. 5, 4351 (2014)]2041-172310.1038/ncomms5351. We find that the introduction of activity has a drastic effect on the ordering kinetics. First, the domain growth law shows a crossover from the usual Lifshitz-Slyozov growth law for phase separation (L∼t^{1/3}, where t is the time) to a novel growth law (L∼t^{1/4}) at late times. Second, the equal-time correlation function of the density field exhibits dynamical scaling for a given activity strength λ, but the scaling function depends on λ.

3.
Phys Rev E ; 101(5-1): 052602, 2020 May.
Article in English | MEDLINE | ID: mdl-32575321

ABSTRACT

A collection of self-propelled particles (SPPs) shows coherent motion and exhibits a true long-range-ordered state in two dimensions. Various studies show that the presence of spatial inhomogeneities can destroy the usual long-range ordering in the system. However, the effects of inhomogeneity due to the intrinsic properties of the particles are barely addressed. In this paper we consider a collection of polar SPPs moving at inhomogeneous speed (IS) on a two-dimensional substrate, which can arise due to varying physical strengths of the individual particles. To our surprise, the IS not only preserves the usual long-range ordering present in homogeneous speed models but also induces faster ordering in the system. Furthermore, the response of the flock to an external perturbation is also faster, compared to the Vicsek-like model systems, due to the frequent update of neighbors of each SPP in the presence of the IS. Therefore, our study shows that an IS can promote information transfer in a moving flock.

4.
Eur Phys J E Soft Matter ; 42(5): 62, 2019 May 23.
Article in English | MEDLINE | ID: mdl-31115728

ABSTRACT

We study the motion of an active Brownian particle (ABP) using the overdamped Langevin dynamics on a two-dimensional substrate with periodic array of obstacles and in a quasi-one-dimensional corrugated channel comprised of periodically arrayed obstacles. The periodic arrangement of the obstacles enhances the persistent motion of the ABP in comparison to its motion in the free space. Persistent motion increases with the activity of the ABP. We note that the periodic arrangement induces directionality in ABP motion at late time, and it increases with the size of the obstacles. We also note that the ABP exhibits a super-diffusive dynamics in the corrugated channel. The transport property is independent of the shape of the channel; rather it depends on the packing fraction of the obstacles in the system. However, the ABP shows the usual diffusive dynamics in the quasi-one-dimensional channel with flat boundary.

SELECTION OF CITATIONS
SEARCH DETAIL
...