Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Luminescence ; 36(1): 163-168, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32790047

ABSTRACT

Continuous monitoring of glucose and sugar sensing plays a vital role in diabetes control. The drawbacks of the present enzyme-based sugar sensors have encouraged the investigation into alternate approaches to design new sensors. The popularity of fluorescence sensors is due to their ability to bind reversibly to compounds containing diol. In this study we investigated the binding ability of phenyl boronic acid P1 for monosaccharides and disaccharides (sugars) in aqueous medium at physiological pH 7.4 using steady-state fluorescence and absorbance. P1 fluorescence was quenched due to formation of esters with sugars. Absorbance and fluorescence measurements led to results that indicated that the sugars studied could be ordered in terms of their affinity to P1, as stated: sucrose > lactose > galactose > xylose > ribose > arabinose. In each case, the slope of modified Stern-Volmer plots was nearly 1, indicating the presence of only a single binding site in boronic acids for sugars. Docking studies were carried out using Schrodinger Maestro v.11.2 software. The binding affinity of phenyl boronic acid P1 with periplasmic protein (PDB ID 2IPM and 2IPL) was estimated using GlideScore.


Subject(s)
Boronic Acids , Sugars , Molecular Docking Simulation , Monosaccharides , Spectrometry, Fluorescence
2.
3 Biotech ; 9(2): 52, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30729076

ABSTRACT

An Ochrobactrum anthropi bacterial strain named as NC-1, capable of utilizing phenmedipham (PMP) herbicide as the sole of carbon source and energy for growth was isolated from pesticide-contaminated soil sample by enrichment culture technique. The isolated bacterial strain was identified as Ochrobactrum anthropi NC-1 (MH 796134) based on its morphological, cultural, biochemical characteristics and analysis of 16S rRNA gene sequence. The strain NC-1 could degrade more than 98.5% of PMP (2 mM) within 168 h. The optimal degradation pH and temperature were 7.0 and 30-35 °C, respectively. The strain NC-1 degraded PMP by a pathway involving its initial hydrolysis of their central amide carbamate linkage to yield m-aminophenol via methyl-N-(3-hydroxyphenyl) carbamate and m-toluidine were the major intermediates. However, m-aminophenol was not further metabolized, because they neither supported the growth of organism nor stimulated oxygen uptake. But m-toluidine released by dealkylation was followed by hydrolysis. Further, results also revealed that degradation of 4-methyl catechol proceeded via 2-hydroxy-5-methyl-6-oxohexa-2, 4-dienoate through meta cleavage ring processes. The formation of these compounds was confirmed by UV, TLC, HPLC, IR, NMR, and GC-MS spectral analysis. The cell-free extracts of O. anthropi NC-1 grown on PMP contained the activities of PMP hydrolase, toluidine dioxygenase, and 4-methyl catechol 1, 2-dioxygenase. These results demonstrate the biodegradation of PMP and promote the potential use of strain NC-1 to bioremediate PMP-contaminated environment.

3.
World J Microbiol Biotechnol ; 34(8): 112, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-29980862

ABSTRACT

Chlorpropham [isopropyl N-(3-chlorophenyl) carbamate] (CIPC), an important phenyl carbamate herbicide, has been used as a plant growth regulator and potato sprout suppressant (Solanum tuberosum L) during long-term storage. A bacterium capable of utilizing the residual herbicide CIPC as a sole source of carbon and energy was isolated from herbicide-contaminated soil samples employing selective enrichment method. The isolated bacterial strain was identified as Bacillus licheniformis NKC-1 on the basis of its morphological, cultural, biochemical characteristics and also by phylogenetic analysis based on 16S rRNA gene sequences. The organism degraded CIPC through its initial hydrolysis by CIPC hydrolase enzyme to yield 3-chloroaniline (3-CA) as a major metabolic product. An inducible 3-CA dioxygenase not only catalyzes the incorporation of molecular oxygen but also removes the amino group by the deamination yielding a monochlorinated catechol. Further, degradation of 4-chlorocatechol proceeded via ortho- ring cleavage through the maleylacetate process. 3-Chloroaniline and 4-chlorocatechol are the intermediates in the CIPC degradation which suggested that dechlorination had occurred after the aromatic ring cleavage. The presence of these metabolites has been confirmed by using ultra-violet (UV), high-performance liquid chromatography (HPLC), thin layer chromatography (TLC), Fourier transmission-infrared (FT-IR), proton nuclear magnetic resonance (1H NMR) and gas chromatography-mass (GC-MS) spectral analysis. Enzyme activities of CIPC hydrolase, 3-CA dioxygenase and chlorocatechol 1, 2-dioxygenase were detected in the cell-free-extract of the CIPC culture and are induced by cells of NKC-1 strain. These results demonstrate the biodegradation pathways of herbicide CIPC and promote the potential use of NKC-1 strain to bioremediate CIPC-contaminated environment with subsequent release of ammonia, chloride ions and carbon dioxide.


Subject(s)
Bacillus licheniformis/metabolism , Chlorpropham/metabolism , Ammonium Compounds/analysis , Aniline Compounds/metabolism , Bacillus licheniformis/classification , Bacillus licheniformis/genetics , Bacillus licheniformis/isolation & purification , Biodegradation, Environmental , Catechols/metabolism , Chlorides/analysis , Chlorpropham/chemistry , Dioxygenases , Herbicides/metabolism , Metabolic Networks and Pathways , Organophosphates/analysis , Phenylcarbamates/metabolism , Phylogeny , Plant Growth Regulators/metabolism , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Solanum tuberosum , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...