Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anat Rec (Hoboken) ; 303(12): 3096-3107, 2020 12.
Article in English | MEDLINE | ID: mdl-32478476

ABSTRACT

Biliary atresia (BA) is a rare neonatal disease characterized by inflammation and obstruction of the extrahepatic bile ducts (EHBDs). The Sox17-haploinsufficient (Sox17+/- ) mouse is an animal model of BA that encompasses bile duct injury and subsequent BA-like inflammation by the neonatal stage. Most Sox17+/- neonates die soon after birth, but some Sox17+/- pups reach adulthood and have a normal life span, unlike human BA. However, the phenotype and BA-derived scars in the hepatobiliary organs of surviving Sox17+/- mice are unknown. Here, we examined the phenotypes of the hepatobiliary organs in post-weaning and young adult Sox17+/- mice. The results confirmed the significant reduction in liver weight, together with peripheral calcinosis and aberrant vasculature in the hepatic lobule, in surviving Sox17+/- mice as compared with their wild-type (WT) littermates. Such hepatic phenotypes may be sequelae of hepatobiliary damage at the fetal and neonatal stages, a notion supported by the slight, but significant, increases in the levels of serum markers of liver damage in adult Sox17+/- mice. The surviving Sox17+/- mice had a shorter gallbladder in which ectopic hepatic ducts were more frequent compared to WT mice. Also, the surviving Sox17+/- mice showed neither obstruction of the EHBDs nor atrophy or inflammation of hepatocytes or the intrahepatic ducts. These data suggest that some Sox17+/- pups with BA naturally escape lethality and recover from fetal hepatobiliary damages during the perinatal period, highlighting the usefulness of the in vivo model in understanding the hepatobiliary healing processes after surgical restoration of bile flow in human BA.


Subject(s)
Bile Ducts/pathology , Biliary Atresia/pathology , Gallbladder/pathology , HMGB Proteins/genetics , Liver/pathology , SOXF Transcription Factors/genetics , Animals , Biliary Atresia/genetics , Disease Models, Animal , Haploinsufficiency , Mice , Organ Size/genetics
2.
Dis Model Mech ; 13(4)2020 04 03.
Article in English | MEDLINE | ID: mdl-31996362

ABSTRACT

Biliary atresia (BA) is characterized by the inflammation and obstruction of the extrahepatic bile ducts (EHBDs) in newborn infants. SOX17 is a master regulator of fetal EHBD formation. In mouse Sox17+/- BA models, SOX17 reduction causes cell-autonomous epithelial shedding together with the ectopic appearance of SOX9-positive cystic duct-like epithelia in the gallbladder walls, resulting in BA-like symptoms during the perinatal period. However, the similarities with human BA gallbladders are still unclear. In the present study, we conducted phenotypic analysis of Sox17+/- BA neonate mice, in order to compare with the gallbladder wall phenotype of human BA infants. The most characteristic phenotype of the Sox17+/- BA gallbladders is the ectopic appearance of SOX9-positive peribiliary glands (PBGs), so-called pseudopyloric glands (PPGs). Next, we examined SOX17/SOX9 expression profiles of human gallbladders in 13 BA infants. Among them, five BA cases showed a loss or drastic reduction of SOX17-positive signals throughout the whole region of gallbladder epithelia (SOX17-low group). Even in the remaining eight gallbladders (SOX17-high group), the epithelial cells near the decidual sites were frequently reduced in the SOX17-positive signal intensity. Most interestingly, the most characteristic phenotype of human BA gallbladders is the increased density of PBG/PPG-like glands in the gallbladder body, especially near the epithelial decidual site, indicating that PBG/PPG formation is a common phenotype between human BA and mouse Sox17+/- BA gallbladders. These findings provide the first evidence of the potential contribution of SOX17 reduction and PBG/PPG formation to the early pathogenesis of human BA gallbladders.This article has an associated First Person interview with the joint first authors of the paper.


Subject(s)
Biliary Atresia/pathology , Gallbladder/abnormalities , HMGB Proteins/metabolism , SOXF Transcription Factors/metabolism , Animals , Animals, Newborn , Child, Preschool , Epithelium/metabolism , Epithelium/pathology , Female , Gallbladder/pathology , Humans , Infant , Male , Mice
3.
Biol Reprod ; 99(3): 578-589, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29635272

ABSTRACT

In mouse conceptus, two yolk-sac membranes, the parietal endoderm (PE) and visceral endoderm (VE), are involved in protecting and nourishing early-somite-stage embryos prior to the establishment of placental circulation. Both PE and VE membranes are tightly anchored to the marginal edge of the developing placental disk, in which the extraembryonic endoderm (marginal zone endoderm: ME) shows the typical flat epithelial morphology intermediate between those of PE and VE in vivo. However, the molecular characteristics and functions of the ME in mouse placentation remain unclear. Here, we show that SOX17, not SOX7, is continuously expressed in the ME cells, whereas both SOX17 and SOX7 are coexpressed in PE cells, by at least 10.5 days postconception. The Sox17-null conceptus, but not the Sox7-null one, showed the ectopic appearance of squamous VE-like epithelial cells in the presumptive ME region, together with reduced cell density and aberrant morphology of PE cells. Such aberrant ME formation in the Sox17-null extraembryonic endoderm was not rescued by the chimeric embryo replaced with the wild-type gut endoderm by the injection of wild-type ES cells into the Sox17-null blastocyst, suggesting the cell autonomous defects in the extraembryonic endoderm of Sox17-null concepti. These findings provide direct evidence of the crucial roles of SOX17 in proper formation and maintenance of the ME region, highlighting a novel entry point to understand the in vivo VE-to-PE transition in the marginal edge of developing placenta.


Subject(s)
Embryonic Development/physiology , Endoderm/physiology , HMGB Proteins/physiology , Placentation/physiology , SOXF Transcription Factors/physiology , Yolk Sac/physiology , Animals , Cell Proliferation , Female , Gene Expression , Genotype , HMGB Proteins/deficiency , HMGB Proteins/genetics , Male , Mice , Mice, Knockout , Pregnancy , SOXF Transcription Factors/deficiency , SOXF Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...