Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 23(22): 4821-4833, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37846545

ABSTRACT

To accurately phenocopy human biology in vitro, researchers have been reducing their dependence on standard, static two-dimensional (2D) cultures and instead are moving towards three-dimensional (3D) and/or multicellular culture techniques. While these culture innovations are becoming more commonplace, there is a growing body of research that illustrates the benefits and even necessity of recapitulating the dynamic flow of nutrients, gas, waste exchange and tissue interactions that occur in vivo. However, cost and engineering complexity are two main factors that hinder the adoption of these technologies and incorporation into standard laboratory workflows. We developed LATTICE, a plug-and-play microfluidic platform able to house up to eight large tissue or organ models that can be cultured individually or in an interconnected fashion. The functionality of the platform to model both healthy and diseased tissue states was demonstrated using 3D cultures of reproductive tissues including murine ovarian tissues and human fallopian tube explants (hFTE). When exogenously exposed to pathological doses of gonadotropins and androgens to mimic the endocrinology of polycystic ovarian syndrome (PCOS), subsequent ovarian follicle development, hormone production and ovulation copied key features of this endocrinopathy. Further, hFTE cilia beating decreased significantly only when experiencing continuous media exchanges. We were then able to endogenously recreate this phenotype on the platform by dynamically co-culturing the PCOS ovary and hFTE. LATTICE was designed to be customizable with flexibility in 3D culture formats and can serve as a powerful automated tool to enable the study of tissue and cellular dynamics in health and disease in all fields of research.


Subject(s)
Polycystic Ovary Syndrome , Female , Animals , Humans , Mice , Polycystic Ovary Syndrome/metabolism , Microfluidics , Coculture Techniques
2.
Environ Health Perspect ; 131(6): 67010, 2023 06.
Article in English | MEDLINE | ID: mdl-37342990

ABSTRACT

BACKGROUND: Cyanobacterial harmful algal blooms (CyanoHABs) originate from the excessive growth or bloom of cyanobacteria often referred to as blue-green algae. They have been on the rise globally in both marine and freshwaters in recently years with increasing frequency and severity owing to the rising temperature associated with climate change and increasing anthropogenic eutrophication from agricultural runoff and urbanization. Humans are at a great risk of exposure to toxins released from CyanoHABs through drinking water, food, and recreational activities, making CyanoHAB toxins a new class of contaminants of emerging concern. OBJECTIVES: We investigated the toxic effects and mechanisms of microcystin-LR (MC-LR), the most prevalent CyanoHAB toxin, on the ovary and associated reproductive functions. METHODS: Mouse models with either chronic daily oral or acute intraperitoneal exposure, an engineered three-dimensional ovarian follicle culture system, and human primary ovarian granulosa cells were tested with MC-LR of various dose levels. Single-follicle RNA sequencing, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting, immunohistochemistry (IHC), and benchmark dose modeling were used to examine the effects of MC-LR on follicle maturation, hormone secretion, ovulation, and luteinization. RESULTS: Mice exposed long term to low-dose MC-LR did not exhibit any differences in the kinetics of folliculogenesis, but they had significantly fewer corpora lutea compared with control mice. Superovulation models further showed that mice exposed to MC-LR during the follicle maturation window had significantly fewer ovulated oocytes. IHC results revealed ovarian distribution of MC-LR, and mice exposed to MC-LR had significantly lower expression of key follicle maturation mediators. Mechanistically, in both murine and human granulosa cells exposed to MC-LR, there was reduced protein phosphatase 1 (PP1) activity, disrupted PP1-mediated PI3K/AKT/FOXO1 signaling, and less expression of follicle maturation-related genes. DISCUSSION: Using both in vivo and in vitro murine and human model systems, we provide data suggesting that environmentally relevant exposure to the CyanoHAB toxin MC-LR interfered with gonadotropin-dependent follicle maturation and ovulation. We conclude that MC-LR may pose a nonnegligible risk to women's reproductive health by heightening the probability of irregular menstrual cycles and infertility related to ovulatory disorders. https://doi.org/10.1289/EHP12034.


Subject(s)
Cyanobacteria , Harmful Algal Bloom , Humans , Female , Animals , Mice , Phosphatidylinositol 3-Kinases , Microcystins/toxicity , Microcystins/analysis , Ovulation , Ovarian Follicle
3.
Biol Reprod ; 108(4): 629-644, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36708230

ABSTRACT

Ovulation is an integral part of women's menstrual cycle and fertility. Understanding the mechanisms of ovulation has broad implications for the treatment of anovulatory diseases and the development of novel contraceptives. Now, few studies have developed effective models that both faithfully recapitulate the hallmarks of ovulation and possess scalability. We established a three-dimensional encapsulated in vitro follicle growth (eIVFG) system that recapitulates folliculogenesis and produces follicles that undergo ovulation in a controlled manner. Here, we determined whether ex vivo ovulation preserves molecular signatures of ovulation and demonstrated its use in discovering novel ovulatory pathways and nonhormonal contraceptive candidates through a high-throughput ovulation screening. Mature murine follicles from eIVFG were induced to ovulate ex vivo using human chorionic gonadotropin and collected at 0, 1, 4, and 8 hours post-induction. Phenotypic analyses confirmed key ovulatory events, including cumulus expansion, oocyte maturation, follicle rupture, and luteinization. Single-follicle RNA-sequencing analysis revealed the preservation of ovulatory genes and dynamic transcriptomic profiles and signaling. Soft clustering identified distinct gene expression patterns and new pathways that may critically regulate ovulation. We further used this ex vivo ovulation system to screen 21 compounds targeting established and newly identified ovulatory pathways. We discovered that proprotein convertases activate gelatinases to sustain follicle rupture and do not regulate luteinization and progesterone secretion. Together, our ex vivo ovulation system preserves molecular signatures of ovulation, presenting a new powerful tool for studying ovulation and anovulatory diseases as well as for establishing a high-throughput ovulation screening to identify novel nonhormonal contraceptives for women.


Subject(s)
Anovulation , Contraceptive Agents , Female , Humans , Animals , Mice , Contraceptive Agents/pharmacology , Ovulation/physiology , Ovarian Follicle/metabolism , Oogenesis , Menstrual Cycle , Progesterone/pharmacology
5.
Cancer Chemother Pharmacol ; 88(3): 415-425, 2021 09.
Article in English | MEDLINE | ID: mdl-34043046

ABSTRACT

PURPOSE: Triple-negative breast cancer (TNBC) is an aggressive, lethal, heterogeneous type of breast cancer (BC). TNBC tends to have a lower response rate to chemotherapy and a lower 5-year survival rate than other types of BC due to recurrence and metastasis. Our previous study revealed that a combination of gemcitabine, romidepsin, and cisplatin was efficacious in controlling TNBC tumor development. In this study, we extended our investigation of gemcitabine + romidepsin + cisplatin in controlling TNBC tumor recurrence and metastasis. METHODS: We investigated the ability of gemcitabine + romidepsin + cisplatin to control cell survival and invasiveness using cell viability, soft agar colony formation, and transwell invasion assays. We determined the efficacy of gemcitabine + romidepsin + cisplatin in controlling tumor recurrence and metastasis using cell-derived xenograft animal models. We used immunoblotting to study signaling modulators regulated by gemcitabine + romidepsin + cisplatin in TNBC cells and tumor tissues. RESULTS: Treatment with gemcitabine + romidepsin + cisplatin reduced the TNBC MDA-MB231 and MDA-MB468 cell survival to ~ 50% and ~ 15%, as well as invasiveness to ~ 31% and ~ 13%, respectively. Gemcitabine + romidepsin + cisplatin suppressed modulators involved in epithelial-mesenchymal transition in an ROS-dependent manner. Controlling tumor recurrence, the Gem plus Rom + Cis regimen (~ 112%) was more efficacious than the Gem plus Cis regimen (~ 21%) in tumor growth inhibition. The Gem plus Rom + Cis regimen efficaciously reduced the development of metastatic nodules to 20% in animals. CONCLUSION: The gemcitabine plus romidepsin + cisplatin regimen was highly efficacious in controlling TNBC tumor development, recurrence, and metastasis in animals. The combination regimen should be poised for efficient translation into clinical trials for controlling the recurrence and metastasis, ultimately contributing to reducing mortality and improving TNBC patients' quality of life.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Epithelial-Mesenchymal Transition/drug effects , Reactive Oxygen Species/metabolism , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/administration & dosage , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Depsipeptides/administration & dosage , Female , Humans , Mice , Mice, Nude , Neoplasm Metastasis/prevention & control , Neoplasm Recurrence, Local , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays , Gemcitabine
6.
Br J Cancer ; 123(2): 226-239, 2020 07.
Article in English | MEDLINE | ID: mdl-32390005

ABSTRACT

BACKGROUND: Human urothelial carcinoma (UC) has a high tendency to recur and progress to life-threatening advanced diseases. Advanced therapeutic regimens are needed to control UC development and recurrence. METHODS: We pursued in vitro and in vivo studies to understand the ability of a triple combination of gemcitabine, romidepsin, and cisplatin (Gem+Rom+Cis) to modulate signalling pathways, cell death, drug resistance, and tumour development. RESULTS: Our studies verified the ability of Gem+Rom+Cis to synergistically induce apoptotic cell death and reduce drug resistance in various UC cells. The ERK pathway and reactive oxygen species (ROS) played essential roles in mediating Gem+Rom+Cis-induced caspase activation, DNA oxidation and damage, glutathione reduction, and unfolded protein response. Gem+Rom+Cis preferentially induced death and reduced drug resistance in oncogenic H-Ras-expressing UC vs. counterpart cells that was associated with transcriptomic profiles related to ROS, cell death, and drug resistance. Our studies also verified the efficacy and safety of the Gem plus Rom+Cis regimen in controlling UC cell-derived xenograft tumour development and resistance. CONCLUSIONS: More than 80% of UCs are associated with aberrant Ras-ERK pathway. Thus the compensatory combination of Rom with Gem and Cis should be seriously considered as an advanced regimen for treating advanced UCs, especially Ras-ERK-activated UCs.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Transitional Cell/drug therapy , Neoplasm Recurrence, Local/drug therapy , Urinary Bladder Neoplasms/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Apoptosis/drug effects , Carcinoma, Transitional Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cisplatin/pharmacology , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Depsipeptides/pharmacology , Humans , MAP Kinase Signaling System/drug effects , Mice , Neoplasm Recurrence, Local/pathology , Reactive Oxygen Species/metabolism , Urinary Bladder Neoplasms/pathology , Urothelium/drug effects , Urothelium/pathology , Xenograft Model Antitumor Assays , Gemcitabine
7.
Cancer Chemother Pharmacol ; 85(1): 141-152, 2020 01.
Article in English | MEDLINE | ID: mdl-31865420

ABSTRACT

PURPOSE: Triple-negative breast cancer (TNBC) is an aggressive, lethal, and heterogeneous subtype of breast cancers, tending to have lower 5-year survival rates than other BC subtypes in response to conventional chemotherapies. This study's aim was to identify advanced regimens to effectively control TNBC tumor development. METHODS: We investigated the combination of the DNA synthesis inhibitor gemcitabine, the DNA-damaging agent cisplatin, and the histone deacetylase inhibitor romidepsin to control a variety of breast cells in vitro. We studied the toxicity of drug doses and administration schedules to determine tolerable combination regimens in immune-deficient nude and -competent BALB/c mice. We then studied the efficacy of tolerable regimens in controlling TNBC cell-derived xenograft development in nude mice. By reducing clinically equivalent doses of each agent in combination, we formulated tolerable regimens in animals. We verified that the tolerable triple combination gemcitabine plus romidepsin + cisplatin regimen more efficacious than double combination regimens in controlling xenograft tumor development in nude mice. RESULTS: A triple combination of gemcitabine + romidepsin + cisplatin synergistically induced death of the TNBC M.D. Anderson-Metastatic Breast cancer (MDA-MB) 231 and MDA-MB468, as well as Michigan Cancer Foundation (MCF) 7, MCF10A, and MCF10A-Ras cells. Cell death induced by gemcitabine + romidepsin + cisplatin was in a reactive oxygen species-dependent manner. CONCLUSION: Considering the high costs for developing a new anticancer agent, we used the FDA-approved drugs gemcitabine, romidepsin (is approved for T-cell lymphoma and is under clinical trial for TNBC), and cisplatin to economically formulate an efficacious and safe combination regimen. The highly efficacious gemcitabine plus romidepsin + cisplatin regimen should be poised for efficient translation into clinical trials, ultimately contributing to reduced mortality and improved quality of life for TNBC patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Drug Compounding , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/chemistry , Cisplatin/administration & dosage , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Depsipeptides/administration & dosage , Female , Humans , Mice , Mice, Nude , Triple Negative Breast Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL
...