Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Peripher Nerv Syst ; 28(3): 317-328, 2023 09.
Article in English | MEDLINE | ID: mdl-37551045

ABSTRACT

BACKGROUND: Charcot-Marie-Tooth disease type 1X is caused by mutations in GJB1, which is the second most common gene associated with inherited peripheral neuropathy. The GJB1 gene encodes connexin 32 (CX32), a gap junction protein expressed in myelinating glial cells. The gene is X-linked, and the mutations cause a loss of function. AIMS: A large number of disease-associated variants have been identified, and many result in mistrafficking and mislocalization of the protein. An existing knockout mouse lacking Gjb1 expression provides a valid animal model of CMT1X, but the complete lack of protein may not fully recapitulate the disease mechanisms caused by aberrant CX32 proteins. To better represent the spectrum of human CMT1X-associated mutations, we have generated a new Gjb1 knockin mouse model. METHODS: CRISPR/Cas9 genome editing was used to produce mice carrying the R15Q mutation in Gjb1. In addition, we identified a second allele with an early frame shift mutation in codon 7 (del2). Mice were analyzed using clinically relevant molecular, histological, neurophysiological, and behavioral assays. RESULTS: Both alleles produce protein detectable by immunofluorescence in Schwann cells, with some protein properly localizing to nodes of Ranvier. However, both alleles also result in peripheral neuropathy with thinly myelinated and demyelinated axons, as well as degenerating and regenerating axons, predominantly in distal motor nerves. Nerve conduction velocities were only mildly reduced at later ages and compound muscle action potential amplitudes were not reduced. Levels of neurofilament light chain in plasma were elevated in both alleles. The del2 mice have an onset at ~3 months of age, whereas the R15Q mice had a later onset at 5-6 months of age, suggesting a milder loss of function. Both alleles performed comparably to wild type littermates in accelerating rotarod and grip strength tests of neuromuscular performance. INTERPRETATION: We have generated and characterized two new mouse models of CMT1X that will be useful for future mechanistic and preclinical studies.


Subject(s)
Charcot-Marie-Tooth Disease , Humans , Mice , Axons/pathology , Charcot-Marie-Tooth Disease/genetics , Connexins/genetics , Disease Models, Animal , Mutation , Myelin Sheath/pathology , Schwann Cells , Animals
2.
Science ; 373(6559): 1156-1161, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34516839

ABSTRACT

Dominant mutations in ubiquitously expressed transfer RNA (tRNA) synthetase genes cause axonal peripheral neuropathy, accounting for at least six forms of Charcot-Marie-Tooth (CMT) disease. Genetic evidence in mouse and Drosophila models suggests a gain-of-function mechanism. In this study, we used in vivo, cell type­specific transcriptional and translational profiling to show that mutant tRNA synthetases activate the integrated stress response (ISR) through the sensor kinase GCN2 (general control nonderepressible 2). The chronic activation of the ISR contributed to the pathophysiology, and genetic deletion or pharmacological inhibition of Gcn2 alleviated the peripheral neuropathy. The activation of GCN2 suggests that the aberrant activity of the mutant tRNA synthetases is still related to translation and that inhibiting GCN2 or the ISR may represent a therapeutic strategy in CMT.


Subject(s)
Charcot-Marie-Tooth Disease/metabolism , Glycine-tRNA Ligase/metabolism , Protein Serine-Threonine Kinases/metabolism , Stress, Physiological , Tyrosine-tRNA Ligase/metabolism , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Disease Models, Animal , Female , Gene Deletion , Genes, Dominant , Glycine-tRNA Ligase/genetics , Male , Mice , Mice, Mutant Strains , Motor Neurons/physiology , Protein Biosynthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Spinal Cord/physiopathology , Stress, Physiological/drug effects , Stress, Physiological/genetics , Stress, Physiological/physiology , Transcriptome , Tyrosine-tRNA Ligase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...