Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol ; 146(2): 173-190, 2023 08.
Article in English | MEDLINE | ID: mdl-37368072

ABSTRACT

Meningiomas are the most common primary intracranial tumors. Although most symptomatic cases can be managed by surgery and/or radiotherapy, a relevant number of patients experience an unfavorable clinical course and additional treatment options are needed. As meningiomas are often perfused by dural branches of the external carotid artery, which is located outside the blood-brain barrier, they might be an accessible target for immunotherapy. However, the landscape of naturally presented tumor antigens in meningioma is unknown. We here provide a T-cell antigen atlas for meningioma by in-depth profiling of the naturally presented immunopeptidome using LC-MS/MS. Candidate target antigens were selected based on a comparative approach using an extensive immunopeptidome data set of normal tissues. Meningioma-exclusive antigens for HLA class I and II are described here for the first time. Top-ranking targets were further functionally characterized by showing their immunogenicity through in vitro T-cell priming assays. Thus, we provide an atlas of meningioma T-cell antigens which will be publicly available for further research. In addition, we have identified novel actionable targets that warrant further investigation as an immunotherapy option for meningioma.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Meningioma/therapy , Chromatography, Liquid , Tandem Mass Spectrometry , Immunotherapy , T-Lymphocytes , Meningeal Neoplasms/therapy
2.
Biochem Biophys Res Commun ; 651: 39-46, 2023 04 09.
Article in English | MEDLINE | ID: mdl-36791497

ABSTRACT

Mutations in the epidermal growth factor receptor (EGFR) have been found in more than 10% of non-small cell lung cancer (NSCLC) patients in North America. The vast majority of these differences are L858R point mutations in Exon 21. Currently, monoclonal antibodies directed against the extracellular domain of EGFR or small molecule/tyrosine kinase inhibitors (TKI) are the stalwarts of NSCLC therapy. Resistance, however, gradually develops because of the T790 mutation towards first and second generation TKIs. The third generation TKI AZD9291 (Osimertinib) has a high affinity for both activating and the acquired resistant mutation (T790 M) in EGFR, with a low affinity towards wild-type EGFR. Recent research, however, suggests that the EGFR (C797S) mutation in the tyrosine kinase domain is a likely cause of resistance to AZD9291. Another significant transformation mechanism associated with this resistance is erbB2 amplification. Our laboratory has developed a small kinase inhibitor, ER121 (MW: ∼500), that inhibits the erbB2/HER2 tyrosine kinases in addition to the EGFR C797S mutations. We have identified a TKI, ER121 targeting the mutant EGFR(T790 M). Using in vitro and in vivo models, examined the efficacy of ER121 on mutant EGFR cell lines. This has enabled us to establish that ER121 is well tolerated when administered orally and produces significant inhibitory activity against human cancers generated by mutant EGFR and amplified ErbB2.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Female , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Protein Kinase Inhibitors/therapeutic use , Lung Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Antineoplastic Agents/therapeutic use , Mutation , Receptor, ErbB-2/genetics , ErbB Receptors/genetics , ErbB Receptors/pharmacology
3.
RMD Open ; 8(2)2022 10.
Article in English | MEDLINE | ID: mdl-36288822

ABSTRACT

OBJECTIVES: To correlate immune responses following a two-dose regimen of mRNA anti-SARS-CoV-2 vaccines in patients with rheumatoid arthritis (RA) to the development of a potent neutralising antiviral activity. METHODS: The RECOVER study was a prospective, monocentric study including patients with RA and healthy controls (HCs). Assessments were performed before, and 3, 6, 12 and 24 weeks, after the first vaccine dose, respectively, and included IgG, IgA and IgM responses (against receptor binding domain, S1, S2, N), IFN-γ ELISpots as well as neutralisation assays. RESULTS: In patients with RA, IgG responses developed slower with lower peak titres compared with HC. Potent neutralising activity assessed by a SARS-CoV-2 pseudovirus neutralisation assay after 12 weeks was observed in all 21 HCs, and in 60.3% of 73 patients with RA. A significant correlation between peak anti-S IgG levels 2 weeks after the second vaccine dose and potent neutralising activity against SARS-CoV-2 was observed at weeks 12 and 24. The analysis of IgG, IgA and IgM isotype responses to different viral proteins demonstrated a delay in IgG but not in IgA and IgM responses. T cell responses were comparable in HC and patients with RA but declined earlier in patients with RA. CONCLUSION: In patients with RA, vaccine-induced IgG antibody levels were diminished, while IgA and IgM responses persisted, indicating a delayed isotype switch. Anti-S IgG levels 2 weeks after the second vaccine dose correlate with the development of a potent neutralising activity after 12 and 24 weeks and may allow to identify patients who might benefit from additional vaccine doses or prophylactic regimen.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Humans , SARS-CoV-2 , Immunoglobulin A , Prospective Studies , COVID-19/prevention & control , Immunoglobulin G , Immunoglobulin M , Antiviral Agents , Viral Proteins , RNA, Messenger
4.
Cell ; 183(3): 556-558, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33125878

ABSTRACT

The uplifting Twitter trend #BlackInNature highlights the stories of Black people in the outdoors, many of whom are life scientists who perform research in the field. We asked #BlackInNature scientists to share their experiences and motivations to get outside.


Subject(s)
Black or African American , Nature , Humans , Motivation
5.
Tree Physiol ; 38(9): 1319-1332, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29425346

ABSTRACT

The forests of the northeastern US are globally, one of the fastest growing terrestrial carbon sinks due to historical declines in large-scale agriculture, timber harvesting and fire disturbance. However, shifting range distributions of tree species with warming air temperatures are altering forest community composition and carbon dynamics. Here, we focus on respiration, a physiological process that is strongly temperature and species dependent. We specifically examined the response of respiration (R; CO2 release) to temperature in 10 broadleaved and six conifer species, as well as the respiratory quotient (RQ; ratio of CO2 released to O2 consumed) of nine broadleaved species that co-occur in the Hudson Highlands Region of New York, USA. The relationships between these physiological measurements and associated leaf traits were also explored. The rates of respiration at 20 °C were 71% higher in northern-ranged broadleaved species when compared with both central- and southern-ranged species. In contrast, the rates of respiration at 20 °C in northern-ranged conifers were 12% lower than in central-ranged conifers. The RQ of broadleaved species increased by 14% as temperatures increased from 15 °C to 35 °C. When RQ values were pooled across temperature, northern-ranged broadleaved species had 12% and 9% lower RQ values than central, and southern-ranged species, respectively, suggesting a reliance on alternative (non-carbohydrate) substrates to fulfill respiratory demands. A Pearson correlation analysis of leaf traits and respiration revealed strong correlations between leaf nitrogen, leaf mass area and R for both broadleaved and conifer species. Our results elucidate leaf trait relationships with tree physiology and reveal the various form and function strategies for species from differing range distributions. Compounded with predicted range distribution shifts and species replacement, this may reduce the carbon storage potential of northeast forests.


Subject(s)
Trees/physiology , Carbon/metabolism , Carbon Dioxide/metabolism , Forests , New York , Nitrogen/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Temperature , Tracheophyta/physiology , Trees/metabolism
6.
Tree Physiol ; 32(9): 1092-101, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22851552

ABSTRACT

Oak forests dominate much of the eastern USA, but their future is uncertain due to a number of threats and widespread failure of oak regeneration. A sudden loss of oaks (Quercus spp.) could be accompanied by major changes in forest nitrogen (N) cycles with important implications for plant nutrient uptake and tree species composition. In this study, we measured the changes in N use and growth rates of black birch trees (Betula lenta L.) following oak girdling at the Black Rock Forest in southeastern New York, USA. Data were collected from nine experimental plots composed of three treatments: 100% oaks girdled (OG), 50% oaks girdled (O50) and control (C). Foliar N concentration and foliar (15)N abundance increased significantly in the oak-girdled plots relative to the control, indicating that the loss of oaks significantly altered N cycling dynamics. As mineralization and nitrification rates increase following oak loss, black birch trees increase N absorption as indicated by higher foliar N content and increased growth rates. Foliar N concentration increased by 15.5% in the O50 and 30.6% in the OG plots relative to the control, while O50 and OG plots were enriched in (15)N by 1.08‰ and 3.33‰, respectively (P < 0.0001). A 641% increase in black birch growth rates in OG plots suggests that this species is able to respond to additional N availability and/or increased light availability. The loss of oaks and subsequent increase in black birch productivity may have a lasting impact on ecosystem form and function.


Subject(s)
Betula/growth & development , Betula/metabolism , Carbon/metabolism , Nitrate Reductase/metabolism , Nitrogen Cycle , Nitrogen/metabolism , Betula/radiation effects , Biomass , Carbon Isotopes/analysis , Ecosystem , Light , Nitrogen Isotopes/analysis , Plant Components, Aerial/growth & development , Plant Components, Aerial/metabolism , Plant Components, Aerial/radiation effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Proteins/metabolism , Quercus/growth & development , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...